[1] B.M. Novak: Hybrid nanocomposite materialsbetween inorganic glasses and organic polymers, Adv Mater 5 (1993) 422-433.
[2] H.L. Frisch, J.E. Mark: Nano composites prepared by threading polymer chains through zeolites, mesoporous silica, or Silica nanotubes, Chem Mater 8 (1996) 1735-1738.
[3] B. Wetzel, F. Haupert, M.Q. Zhang: Epoxy nanocomposites with high mechanical and tribological performance, Compos Sci Technol 63 (2003) 2055–2067.
[4] H. Wang, Y. Bai, S. Liu, J. Wu, C.P. Wong: combinedeffects of silica filler and its interface in epoxy resin,
Acta Mater 50 (2002) 4369–4377.
[5] J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi,K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun'ko, W. J. Blau: High-performance nanotubereinforcedplastics: understanding the mechanism of strength increase, Adv Func Mater 14 (2004) 791–798.
[6] M. Izadi, M.M. Shahmardan, A. Behzadmehr, A.M.Rashidi, A. Amrollahi: Modeling of effective
thermal conductivity and viscosity of carbonstructured nanofluid, Trans Phenom in Nano Micro scale 3 (2015) 1-13.
[7] G.D. Seidel, D.C. Lagoudas: A micromechanics model for the electrical conductivity of nanotubepolymer nanocomposites, J Compos Mater 43(2009) 917–941.
[8] H. Liu, L.C. Brinson: Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites, Compos Sci Technol 68 (2008) 1502-1512.
[9] L.S. Schadler, L.C. Brinson, W.G. Sawyer: Polymer Nanocomposites: A Small Part of the Story, J Miner Metal Mater Soc 59 (2007) 53-60.
[10] M. Avella, F. Bondioli, V. Cannillo, M.E. Errico, A.M. Ferrari, B. Focher, M. Malinconico, T. Manfredini, M. Montorsi: Preparation, characterisation and computational study of poly (ecaprolactone) based nanocomposites, Mater Sci Technol 20 (2004a) 1340–1344.
[11] M. Avella, F. Bondioli, V. Cannillo, S. Cosco, M.E. Errico, A.M. Ferrari, B. Focher, M. Malinconico: Properties/structure relationships in innovativePCL–SiO2 nanocomposites, Macromol Symp 218 (2004b) 201–210.
[12] L.S. Schadler: Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint, MRS Bulletin 32 (2007) 335-340.
[13] R.A. Vaia, H.D. Wagner: Framework for Nanocomposites, Mater Today 7 (2004) 32-37.
[14] J.S. Snipes, C.T. Robinson, S.C. Baxter: Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites, J Compos Mater 45 (2011) 2537-2546.
[15] S.C. Baxter, C.T. Robinson: Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites, Compos Sci Technol 71 (2011) 1273–1279.
[16] M.J. Mahmoodi, M.M. Aghdam: Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading—A micromechanical approach, Mater Sci Eng A 528 (2011) 7983-7990.
[17] S.R . Falahatgar, M. Salehi, M.M. Aghdam: Nonlinear viscoelastic response of unidirectional fiber reinforced composites in off-axis loading, J Reinf Plast Compos 28 (2009)1793–1812.
[18] R.P. Nimmer, R.J. Bankert, E.S. Russell, G.A. Smith, P.K. Wright: Micromechanical modeling offiber/matrix interface effects in transversely loaded SiC/Ti-6-4 metal matrix composite, J Compos Technol Res 13 (1991) 3-13.
[19] R. Haj-Ali, J. Aboudi: Nonlinear micromechanical formulation of the high fidelity generalized method of cells, Int J Solids Struct 46 (2009) 2577-2592.
[20] T.W. Chou, S. Nomura, M. Taya: A self-consistent approach to the elastic stiffness of short-fiber composites, J Compos Mater 14 (1980) 178-188.
[21] J.C. Halpin, S.W. Tsai: Stiffness and expansion estimates for oriented short fiber composites, J Compos Mater 3 (1969) 732–734.
[22] T. Mori, K. Tanaka: Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metal 21 (1973) 571-574.
[23] J.I. Weon, H.J. Sue: Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite, Polymer 46 (2005) 6325–6334.
[24] H.W. Wang, H.W. Zhou, R.D. Peng, J. Leon Mishnaevsky: Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept, Compos Sci Technol 71 (2011) 980–988.
[25] S. Dhala, M.C. Ray:Micromechanics of piezoelectric fuzzy fiber-reinforced composite, Mech Mater 81 (2015) 1–17.
[26] R.D. Peng, H.W. Zhou, H.W. Wang, J. Leon Mishnaevsky: Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus, Comput Mater Sci 60 (2012) 19–31.
[27] B. Mortazavi, J. Bardon, S. Ahzi: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study, Comput Mater Sci 69 (2013) 100–106.
[28] S. Ajori, R. Ansari, M. Mirnezhad: Mechanical properties of defective γ-graphyne using molecular dynamics simulations, Mater Sci Eng: A 561 (2013) 34–39.
[29] R. Ansari, S. Rouhi, S. Ajori: Elastic properties and large deformation of two-dimensional silicene nanosheets using molecular dynamics, Super Microstruct 65 (2014) 64–70.
[30] M.M. Shokrieh, R. Rafiee: Development of a full range multi-scale model to obtain elastic properties of CNT/polymer composites, Iran Polymer J 21 (2012) 397-402.
[31] M.J. Mahmoodi, M.M. Aghdam, M. Shakeri: The effects of interfacial debonding on the elastoplastic response of unidirectional silicon carbide–titanium composites, J Mech Eng Sci 223 (2010) 259-269.
[32] Z. Wanga, J. Lua, Y. Li, S.Y. Fu, S. Jiang, X. Zhao: Studies on thermal and mechanical properties of
PI/SiO2 nanocomposite films at low temperature, Composites A 37 (2006) 74–79.
[33] G.M. Odegard, T.C. Clancy, T.S. Gates: Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer 46 (2005) 553–562.
[34] E. Kontou, G. Anthoulis:The effect of silica nanoparticles on the thermomechanical properties of polystyrene, J. Appl. Polym. Sci 105 (2007) 1723–1731.