[1] D.B. Tuckerman, R.F.W. Pease, Highperformance heat sinking for VLSI, IEEEElectron. Devices Lett. EDL-2 (5) (1981) 126–129.
[2] B.C. Pak, Y.I. Cho, Hydrodynamic and heattransfer study of dispersed fluids with submicronmetallic oxide particles, Exp. Heat Transfer 11(1998) 151–170.
[3] S. Lee, S.U.S. Choi, Applications of metallicnanoparticle suspensions in advanced coolingsystem, in: Y Kwon, D.C. Davis, H.H. Chung(Eds.), Recent Advances in Solid/Structures andApplication of Metallic Materials, PVP-vol.342/MD-vol. 72, ASME, New York, 1996, pp.227–234.
[4] Y. Xuan, Q. Li, Investigation on convective heattransfer and flow features of nanofluids, ASME J.Heat Transfer 125 (2003) 151–155.
[5] D. Wen, Y. Ding, Experimental investigation intoconvective heat transfer of nanofluids at theentrance region under laminar flow conditions,Int. J. Heat Mass Transfer 47 (2004) 5181–5188.
[6] J. Buongiorno, Convective transport in nanofluids,ASME J. Heat Transfer 128 (2006) 240–250.
[7] Mirmasoumi, S., Behzadmehr, A., Numericalstudy of laminar mixed convection of a nanofluidin a horizontal tube using two-phase mixturemodel, Applied Applied Thermal Engineering 282008; 717–727.
[8] Izadi, M., Behzadmehr A., Jalali-Vahid, D.,Numerical study of developing laminar forcedconvection of a nanofluid in an annulus,International Journal of Thermal Sciences 482009; 2119–2129.
[9] R. Chein, J. Chuang,Experimental microchannelheat sink performance studies using nanofluids,International Journal of Thermal Sciences 46(2007) 57–66.
[10] R. Chein, J. Chuang, Experimental microchannelheat sink performance studies using nanofluids,International Journal of Thermal Sciences 46(2007) 57–66.
[11] J. Y. Jung, H. S. Oh, H.Y. Kwak, Forcedconvective heat transfer of nanofluids inmicrochannels, International Journal of Heat andMass Transfer 52 (2009) 466–472.
[12] C.J. Ho, L.C. We, Z.W. Li, An experimentalinvestigation of forced convective coolingperformance of a microchannel heat sink withAl2O3/water nanofluid, Applied ThermalEngineering 30 (2010) 96-103.
[13] M. D. Byrne, R. A. Hart, A. K. da Silva,Experimental thermal–hydraulic evaluation ofCuO nanofluids in microchannels at variousconcentrations with and without suspensionenhancers, International Journal of Heat and MassTransfer 55 (2012) 2684-2692.
[14] S. A. Fazeli, S. M. Hosseini Hashemi, H.Zirakzadeh, M. Ashjaee, Experimental andnumerical investigation of heat transfer in aminiature heat sink utilizing silica nanofluid,Superlattices and Microstructures 51 (2012) 247–264.
[15] M. Kalteh, A. Abbassi , M Saffar-Avval, A.Frijns, A. Darhuber, J. Harting, Experimental andnumerical investigation of nanofluid forcedconvection inside a wide microchannel heat sink,Applied Thermal Engineering 36 (2012) 260-268.
[16] Kosar, Effect of substrate thickness and materialon heat transfer in microchannel heat sinks,International Journal of Thermal Sciences 49(2010) 635-642.
[17] M. Kalteh, A. Abbassi, M Saffar-Avval, JensHarting, Eulerian–Eulerian two-phase numericalsimulation of nanofluid laminar forced convectionin a microchannel, International Journal of Heatand Fluid Flow 32 (2011) 107-116.
[18] M. Hojjat , S.Gh. Etemad , R. Bagheri , J.Thibault, Rheological characteristics of non-Newtonian nanofluids: Experimentalinvestigation, International Communications inHeat and Mass Transfer 38 (2011) 144–148.
[19] A.G. Fedorov, R. Viskanta, Three dimensionalconjugate heat transfer in the microchannel heatsink for electronic packaging. InternationalJournal of Heat
[20] and Mass Transfer 43 (2000) 399e415.
[21] G. Tunc, Y. Bayazitoglu, Heat transfer inmicrotubes with viscous dissipation, Int. J. HeatMass Transfer 44 (2001) 2395–2403.
[22] H.-E. Jeong, J.-T. Jeong, Extended Graetzproblem including streamwise conduction andviscous dissipation in microchannel, InternationalJournal of Heat and Mass Transfer 49 (2006)2151–2157.
[23] P.M. Coelho, F.T. Pinho, Fully-developed heattransfer in annuli with viscous dissipation, Int. J.Heat Mass Transfer 49 (2006) 3349–3359.
[24] S. Del Giudice, C. Nonino, S. Savino, Effects ofviscous dissipation and temperature dependentviscosity in thermally and simultaneouslydeveloping laminar flows in microchannels, Int. J.Heat Fluid Flow 28 (2007) 15–27.
[25] O. Aydin, M. Avci, Analysis of laminar heattransfer in micro-Poiseuille flow, InternationalJournal of Thermal Sciences 46 (2007) 30–37.
[26] K. Hooman, Entropy generation for microscaleforced convection: Effects of different thermalboundary conditions, velocity slip, temperaturejump, viscous dissipation, and duct geometry,International Communications in Heat and MassTransfer 34 (2007) 945–957.
[27] M. Corcione, Empirical correlating equations forpredicting the effective thermal conductivity anddynamic viscosity of nanofluids, EnergyConversion and Management 52 (2011) 789-793.
[28] T. X. Phuoc, M. Massoudi, R. Chen, Viscosityand thermal conductivity of nanofluids containingmulti-walled carbon nanotubes stabilized bychitosan, International Journal of ThermalSciences 50 (2011) 12-18.
[29] Ebadian, M.A., Dong, Z.F., 1998. Forcedconvection, internal flow in ducts. In: Rohsenow,W.M., Hartnett, J.P., Cho, Y.I. (Eds.), Handbookof Heat Transfer.McGraw-Hill, New York, pp.5.1–5.137.
[30] M. Kalteh, A. Abbassi , M Saffar-Avval, A.Frijns, A. Darhuber, J. Harting, Experimental andnumerical investigation of nanofluid forced convection inside a wide microchannel heat sink,Applied Thermal Engineering 36 (2012) 260-268.
[31] M.B. Abbott and D.R. Basco, Computational fluiddynamics: An introduction for engineers,Longman Scientific & Technical, 1989.