Study on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink

Document Type : Original Research Paper

Authors

1 Mechanical Engineering Department, Shahrood University of Technology, Shahrood, Iran

2 Nanotechnology Research Center, Research Institute of Petroleum Industry (R.I.P.I)

Abstract

The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale.
Results were compared with both analytical and experimental data and observed good concordance with
previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and
hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficiency (heat dissipation
to pumping power) was observed with an increasing in Reynolds number. It was shown that the pressure was
decrease with an increase in Brinkman number. Dependency of Nu increment changes with substrate material.

Keywords


[1] D.B. Tuckerman, R.F.W. Pease, Highperformance heat sinking for VLSI, IEEEElectron. Devices Lett. EDL-2 (5) (1981) 126–129.
[2] B.C. Pak, Y.I. Cho, Hydrodynamic and heattransfer study of dispersed fluids with submicronmetallic oxide particles, Exp. Heat Transfer 11(1998) 151–170.
[3] S. Lee, S.U.S. Choi, Applications of metallicnanoparticle suspensions in advanced coolingsystem, in: Y Kwon, D.C. Davis, H.H. Chung(Eds.), Recent Advances in Solid/Structures andApplication of Metallic Materials, PVP-vol.342/MD-vol. 72, ASME, New York, 1996, pp.227–234.
[4] Y. Xuan, Q. Li, Investigation on convective heattransfer and flow features of nanofluids, ASME J.Heat Transfer 125 (2003) 151–155.
[5] D. Wen, Y. Ding, Experimental investigation intoconvective heat transfer of nanofluids at theentrance region under laminar flow conditions,Int. J. Heat Mass Transfer 47 (2004) 5181–5188.
[6] J. Buongiorno, Convective transport in nanofluids,ASME J. Heat Transfer 128 (2006) 240–250.
[7] Mirmasoumi, S., Behzadmehr, A., Numericalstudy of laminar mixed convection of a nanofluidin a horizontal tube using two-phase mixturemodel, Applied Applied Thermal Engineering 282008; 717–727.
[8] Izadi, M., Behzadmehr A., Jalali-Vahid, D.,Numerical study of developing laminar forcedconvection of a nanofluid in an annulus,International Journal of Thermal Sciences 482009; 2119–2129.
[9] R. Chein, J. Chuang,Experimental microchannelheat sink performance studies using nanofluids,International Journal of Thermal Sciences 46(2007) 57–66.
[10] R. Chein, J. Chuang, Experimental microchannelheat sink performance studies using nanofluids,International Journal of Thermal Sciences 46(2007) 57–66.
[11] J. Y. Jung, H. S. Oh, H.Y. Kwak, Forcedconvective heat transfer of nanofluids inmicrochannels, International Journal of Heat andMass Transfer 52 (2009) 466–472.
[12] C.J. Ho, L.C. We, Z.W. Li, An experimentalinvestigation of forced convective coolingperformance of a microchannel heat sink withAl2O3/water nanofluid, Applied ThermalEngineering 30 (2010) 96-103.
[13] M. D. Byrne, R. A. Hart, A. K. da Silva,Experimental thermal–hydraulic evaluation ofCuO nanofluids in microchannels at variousconcentrations with and without suspensionenhancers, International Journal of Heat and MassTransfer 55 (2012) 2684-2692.
[14] S. A. Fazeli, S. M. Hosseini Hashemi, H.Zirakzadeh, M. Ashjaee, Experimental andnumerical investigation of heat transfer in aminiature heat sink utilizing silica nanofluid,Superlattices and Microstructures 51 (2012) 247–264.
[15] M. Kalteh, A. Abbassi , M Saffar-Avval, A.Frijns, A. Darhuber, J. Harting, Experimental andnumerical investigation of nanofluid forcedconvection inside a wide microchannel heat sink,Applied Thermal Engineering 36 (2012) 260-268.
[16] Kosar, Effect of substrate thickness and materialon heat transfer in microchannel heat sinks,International Journal of Thermal Sciences 49(2010) 635-642.
[17] M. Kalteh, A. Abbassi, M Saffar-Avval, JensHarting, Eulerian–Eulerian two-phase numericalsimulation of nanofluid laminar forced convectionin a microchannel, International Journal of Heatand Fluid Flow 32 (2011) 107-116.
[18] M. Hojjat , S.Gh. Etemad , R. Bagheri , J.Thibault, Rheological characteristics of non-Newtonian nanofluids: Experimentalinvestigation, International Communications inHeat and Mass Transfer 38 (2011) 144–148.
[19] A.G. Fedorov, R. Viskanta, Three dimensionalconjugate heat transfer in the microchannel heatsink for electronic packaging. InternationalJournal of Heat
[20] and Mass Transfer 43 (2000) 399e415.
[21] G. Tunc, Y. Bayazitoglu, Heat transfer inmicrotubes with viscous dissipation, Int. J. HeatMass Transfer 44 (2001) 2395–2403.
[22] H.-E. Jeong, J.-T. Jeong, Extended Graetzproblem including streamwise conduction andviscous dissipation in microchannel, InternationalJournal of Heat and Mass Transfer 49 (2006)2151–2157.
[23] P.M. Coelho, F.T. Pinho, Fully-developed heattransfer in annuli with viscous dissipation, Int. J.Heat Mass Transfer 49 (2006) 3349–3359.
[24] S. Del Giudice, C. Nonino, S. Savino, Effects ofviscous dissipation and temperature dependentviscosity in thermally and simultaneouslydeveloping laminar flows in microchannels, Int. J.Heat Fluid Flow 28 (2007) 15–27.
[25] O. Aydin, M. Avci, Analysis of laminar heattransfer in micro-Poiseuille flow, InternationalJournal of Thermal Sciences 46 (2007) 30–37.
[26] K. Hooman, Entropy generation for microscaleforced convection: Effects of different thermalboundary conditions, velocity slip, temperaturejump, viscous dissipation, and duct geometry,International Communications in Heat and MassTransfer 34 (2007) 945–957.
[27] M. Corcione, Empirical correlating equations forpredicting the effective thermal conductivity anddynamic viscosity of nanofluids, EnergyConversion and Management 52 (2011) 789-793.
[28] T. X. Phuoc, M. Massoudi, R. Chen, Viscosityand thermal conductivity of nanofluids containingmulti-walled carbon nanotubes stabilized bychitosan, International Journal of ThermalSciences 50 (2011) 12-18.
[29] Ebadian, M.A., Dong, Z.F., 1998. Forcedconvection, internal flow in ducts. In: Rohsenow,W.M., Hartnett, J.P., Cho, Y.I. (Eds.), Handbookof Heat Transfer.McGraw-Hill, New York, pp.5.1–5.137.
[30] M. Kalteh, A. Abbassi , M Saffar-Avval, A.Frijns, A. Darhuber, J. Harting, Experimental andnumerical investigation of nanofluid forced convection inside a wide microchannel heat sink,Applied Thermal Engineering 36 (2012) 260-268.
[31] M.B. Abbott and D.R. Basco, Computational fluiddynamics: An introduction for engineers,Longman Scientific & Technical, 1989.