[1] Y.H Qian., D. d’Humieres, P. Lallemand, LatticeBGK models for Navier–Stokes equation, Europhys.Lett. 17 (6) (1992) 479–484.
[2] S. Chen, G.D. Doolen, Lattice Boltzmann methodfor fluid flows, Annu. Rev. Fluid Mech. 30 (1998)329–364.
[3] D. Yu, R. Mei, L.S. Luo, W. Shyy, Viscous flowcomputations with the method of lattice Boltzmannequation, Progr. Aerospace Sci. 39 (2003) 329–367.
[4] S. Succi, The Lattice Boltzmann Equation for FluidDynamics and Beyond, Clarendon Press, Oxford,2001.
[5] X. Shan, Simulation of Rayleigh–Benard convectionusing a lattice Boltzmann method, Phys. Rev. E 55(1997) 2780–2788.
[6] X. He, S. Chen, G.D. Doolen, A novel thermalmodel for the lattice Boltzmann method inincompressible limit, J. Comput. Phys. 146 (1998)282–300.
[7] Y. Zhou, R. Zhang, I. Staroselsky, H. Chen,Numerical simulation of laminar and turbulentbuoyancy-driven flows using a lattice Boltzmannbased algorithm, Int. J. Heat Mass Transfer 47(2004) 4869–4879.
[8] H.N. Dixit, V. Babu, Simulations of high Rayleighnumber natural convection in a square cavity usingthe lattice Boltzmann method, Int. J. Heat MassTransfer 49 (2006) 727–739.
[9] P.H. Kao, R.-J. Yang, Simulating oscillatory flowsin Rayleigh– Benard convection using the latticeBoltzmann method, Int. J. Heat Mass Transfer 50(2007) 3315–3328.
[10] Y. Peng, C. Shu, Y.T.Chew, Simplified thermallattice Boltzmann model for incompressible thermalflows, Phys. Rev. E 68 (2003) 026701.
[11] G. Barrios, R. Rechtman, J. Rojas, Tovar R., Thelattice Boltzmann equation for natural convection ina two-dimensional cavity with a partially heatedwall, J. Fluid Mech. 522 (2005) 91–100.
[12] A. Bejan, Heat Transfer, Wiley, New York, 1993.
[13] I. Catton, Natural Convection in Enclosures, Proc.the 6th Int. Heat Transfer Conference, 6 (1978) 13-31.
[14] S. Ostrach, Natural Convection in Enclosures, J.Heat Transfer 110 (1988) 1175-1190.
[15] S. Kakaç, Y. Yener, Convective Heat Transfer, CRCPress, 2nd ed. (1995) 340-350.
[16] D. Poilikakos, Natural convection in a confined fluid- filled space driven by a single vertical wall withwarm and cold regions. J. Heat Transfer 107 (1985)867-876.
[17] D. Angirasa, M. J. B. M. Pourquié, F. T. M.Nieuwstadt, Numerical study of transient and steadylaminar buoyancy - driven flows and heat transfer ina square open cavity. Numerical Heat Transfer PartA 22 (1992) 223-239.
[18] O. Ayhan, A. Ünal, T. Ayhan, Numerical solutionsfor buoyancy - driven flow in a 2-D square enclosureheated from one side and cooled from above,Advanced in Computational Heat Transfer, TR,(1997) 337–394.
[19] K. Küblbeck, G. P. Merker, J. Straub, Advancenumerical computation of two – dimensional time -dependent free convection in cavities. Int. J. HeatMass Transfer 23 (1980) 203-217.
[20] N. C. Markatos, K. A. Pericleous, Laminer andturbulent natural convection in an enclosed cavity,Int. J. Heat Mass Transfer 27 (1984) 755-772.
[21] L. Lage, A. Bejan, The Ra-Pr domain of laminarnatural convection in an enclosure heated from theside. Numerical Heat Transfer Part A 19 (1991) 21-41.
[22] A. Bejan, Entropy generation through heat and fluidflow. New York: Wiley; 1982.
[23] A. Bejan, Entropy generation minimization. NewYork: CRC Press; 1996
[24] A. Bejan, Advanced engineering thermodynamics,2nd ed. New York: Wiley
[25] G. de Vahl Davis, Natural convection of air in asquare cavity: a bench mark numerical solution, Int.J. Numer. Methods Fluids. 3 (1983) 249–264.
[26] D. Rejane, C. Oliveski, H. Mario Macagnan, B.Jacqueline Copetti, Entropy generation and naturalconvection in rectangular cavities, J. AppliedThermal Engineering
[27] M.Y. Ha, M.J. Jung, A numerical study on threedimensionalconjugate heat transfer of naturalconvection and conduction in a differentially heatedcubic enclosure with a heat-generating cubicconducting body, Int. J. Heat and Mass Tran. 43(2000) 4229–4248.
[28] A. Mezrhab, H. Bouali, C. Abid, Modelling ofcombined radiative and convective heat transfer inan enclosure with a heat-generating conductingbody, International Journal of ComputationalMethods 2 (3) (2005) 431–450.
[29] I. Dagtekin, H.F. Oztop, A. Bahloul., Entropygeneration for natural convection in _-shapedenclosures, Int. Commun. Heat Mass Transf. 34(2007) 502–510.
[30] P.H. Kao, Y.H. Chen, R.J. Yang, Simulations of themacroscopic and mesoscopic natural convectionflows within rectangular cavities, J. Heat Mass Tran.51 (2008) 3776–3793.
[31] Z. Guo, B. Shi, C. Zheng, A coupled lattice BGKmodel for the Boussinesq equations, Int. J. ofNumerical Methods in Fluids, 39(4) (2002) 325-342.
[32] Z.L. Guo, Ch. Zheng, B.C. Shi, An extrapolationmethod for boundary conditions in lattice Boltzmannmethod, Phys. Fluids, 14 (6) (2002) 2007-2010.
[33] R. Mei, D. Yu, W. Shyy, L. Sh. Luo, Forceevaluation in the lattice Boltzmann methodinvolving curved geometry, Phys. Rev. E,.65 (2002)1-14.
[34] Z.L. Guo, B.C. Shi, Ch. Zheng, A coupled latticeBGK model for the Boussinesq equations, Int. J.Numer. Methods Fluids, 39 (4) (2002), 325-342.
[35] E. K. Glapke, C.B. Watkins, J. N. Cannon, Constantheat flux solutions for natural convection betweenconcentric and eccentric horizontal cylinders,Numer. Heat Transfer, 10 (1986), 279-295.
[36] X. He, Q. Zou, L.S. Luo, M. Dembo, Analyticsolutions of simple flows and analysis of nonslipboundary condition for the lattice Boltzmann BGKmodel, J. Stat. Phys. 87 (1997), pp. 115–136.
[37] H.N. Dixit, Simulation of flow and temperaturefields in enclosures using the lattice Boltzmannmethod. MS Thesis, 2005, Indian Institute ofTechnology Madras, India.
[38] Z.L. Guo, Ch. Zheng, B.C. Shi, An extrapolationmethod for boundary conditions in lattice Boltzmannmethod, Phys. Fluids, 14 (6) (2002), 2007-2010.
[39] C. Cercignani, Mathematical Methods in KineticTheory, Plenum, New York, 1969.
[40] G. Wannier, Statistical Physics, Diver, New York,1966.
[41] C. Shu, X.D. Niu, Y.T. Chew, A lattice Boltzmannkinetic model for microflow and heat transfer, J.Stat. Phys. 121 (1–2) (2005) 239–255