[1] S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology: Wiley interscience (2007).
[2] A.T. Bourgoyne Jr., K. Millheim Keith, E. Chenevert Martin, F.S. Young Jr., second Edition: Applied Drilling Engineering (1991).
[3] Zhu H, Han D, Meng Z, Wu D, Zhang C. Preparation and thermal conductivity of CuO nanofluid via a wet chemical method. Nanoscale research letters. 2011 Dec 1;6(1):181.
[4] Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 1999;121(2):280-9.
[5] Jesumathy S,Udayakumar M, Suresh S.Experimental study of enhanced heat transfer by addition of CuO nanoparticle. Heat and Mass Transfer. 2012 Jun 1;48(6):965-78.
[6] Zhang L, Yuan F, Zhang X, Yang L. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chemistry Central Journal. 2011 Dec 1;5(1):75.
[7] Kamal A, Srinivasulu V, Murty JN, Shankaraiah N, Nagesh N, Srinivasa Reddy T, Subba Rao AV. Copper Oxide Nanoparticles Supported on Graphene Oxide‐Catalyzed S‐Arylation: An Efficient and Ligand‐Free Synthesis of Aryl Sulfides. Advanced Synthesis & Catalysis. 2013 Aug 12;355(11‐12):2297-307.
[8] Barua S, Das G, Aidew L, Buragohain AK, Karak N. Copper–copper oxide coated nanofibrillar cellulose: a promising biomaterial. Rsc Advances. 2013;3(35):14997-5004.
[9] Liu MS, Lin MC, Tsai CY, Wang CC. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. International Journal of Heat and Mass Transfer. 2006 Aug 31;49(17):3028-33.
[10] Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics. 2006 Apr 15;99(8):084314.
[11] Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal. 2005;17(2):35-40.
[12] Zhang X, Gu H, Fujii M. Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids. International Journal of Thermophysics. 2006 Mar 1;27(2):569-80.
[13] Lo CH, Tsung TT, Chen LC. Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS). Journal of Crystal Growth. 2005 Apr 15;277(1):636-42.
[14] A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin: Effect of CNT structures on thermal conductivity and stability of nanofluid, Int. J. of Heat and Mass Transfer, 55(2012) 1529–1535.
[15] Nasiri A, Shariaty -Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Experimental thermal and fluid science. 2011 May 31;35(4):717-23.
[16] Sahooli M, Sabbaghi S, Saboori R. Synthesis and characterization of mono sized CuO nanoparticles. Materials Letters. 2012 Aug 15;81:169-72.
[17] Zhu J, Li D, Chen H, Yang X, Lu L, Wang X. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Materials Letters. 2004 Oct 31;58(26):3324-7.