Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

Document Type : Original Research Paper

Authors

1 Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, I. R.Iran

2 School of Aerospace, Mechanical, and Mechatronic Eng., The University of Sydney, NSW 2006, Australia

Abstract

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative
Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each four water molecule coarse grained in a bead to obtain the same bead size as built in Nafion model. The morphology of hydrated Nafion is studied for branching density of 1144, an example of Nafion EW1200, water content of 10%, 20% and 30% and polymer molecular weight of 5720, 11440 and 17160. The results show water particles and hydrophilic particles of Nafion side chains spontaneously form aggregates and are embedded in the hydrophobic phase of Nafion backbone. The averaged water pore diameter and the averaged water clusters distance were found to rises with water volume fraction.

Keywords


[1] K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chemical reviews 104 (2004) 4535-4586.
[2] B. Smitha, S. Sridhar, A. Khan: Solid polymer electrolyte membranes for fuel cell applications—a review, Journal of membrane science 259 (2005) 10-26.
[3] K.D. Kreuer: On Solids with Liquidlike Properties and the Challenge To Develop New Proton‐Conducting Separator Materials for Intermediate‐Temperature Fuel Cells, ChemPhysChem 3 (2002) 771-775.
[4] T.A. Zawodzinski Jr, M. Neeman, L.O. Sillerud, S. Gottesfeld: Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, The Journal of Physical Chemistry 95 (1991) 6040-6044.
[5] J. T. Hinatsu, M. Mizuhata, H. Takenak: Water uptake of perfluorosulfonic acid membranes from liquidwater and water vapor, Journal of the Electrochemical Society 141 (1994) 1493-1498.
[6] R. B. Moore III, C.R. Martin: Morphology and chemical properties of the Dow perfluorosulfonate ionomers, Macromolecules 22 (1989) 3594-3599.
[7] S. Kumar, M. Pineri: Interpretation of small‐angle xray and neutron scattering data for perfluorosulfonated ionomer membranes, Journal of Polymer Science Part B: Polymer Physics 24 (1986) 1767-1782.
[8] P.A. Cirkel, T. Okada: A Comparison of Mechanicaland Electrical Percolation during the Gelling of Nafion Solutions, Macromolecules 33 (2000) 4921-4925.
[9] T. Gierke, G. Munn, F. Wilson: The morphology in nafion perfluorinated membrane products, as determined by wide‐and small‐angle x‐ray studies, Journal of Polymer Science: Polymer Physics Edition 19 (1981) 1687-1704.
[10] H.-G. Haubold, T. Vad, H. Jungbluth, P. Hiller: Nano structure of NAFION: a SAXS study, Electrochimica Acta 46 (2001) 1559-1563.
[11] Z.e. Porat, J.R. Fryer, M. Huxham, I. Rubinstein: Electron microscopy investigation of the microstructure of nafion films, The Journal of Physical Chemistry 99 (1995) 4667-4671.
[12] M. Ludvigsson, J. Lindgren, J. Tegenfeldt: FTIR study of water in cast Nafion films, Electrochimica Acta 45 (2000) 2267-2271.
[13] G. Gebel , R.B. Moore: Small-angle scattering study of short pendant chain perfuorosulfonated ionomer membranes, Macromolecules 33 (2000) 4850-4855.
[14] F.N. Büchi, G.G. Scherer: Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells, Journal of The Electrochemical Society 148 (2001) A183-A188.
[15] S. Ge, B. Yi, P. Ming: Experimental determination of electro-osmotic drag coefficient in Nafion membrane for fuel cells, Journal of The Electrochemical Society 153 (2006) A1443-A1450.
[16] X. Ren, S. Gottesfeld: Electro-osmotic drag of water in poly (perfluorosulfonic acid) membranes, Journal of The Electrochemical Society 148 (2001) A87-A93.
[17] M. Fujimura, T. Hashimoto, H. Kawai: Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima, Macromolecules 14 (1981) 1309-1315.
[18] L. Rubatat, A.L. Rollet, G. Gebel, O. Diat: Evidence of elongated polymeric aggregates in Nafion, Macromolecules 35 (2002) 4050-4055.
[19] K. Kreuer: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of membrane science 185 (2001) 29-39.
[20] K. Schmidt-Rohr, Q. Chen: Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature materials 7 (2008) 75-83.
[21] M. Eikerling, S.J. Paddison, L.R. Pratt, T.A. Zawodzinski: Defect structure for proton transport in a triflic acid monohydrate solid, Chemical Physics Letters 368 (2003) 108-114.
[22] A. Roudgar, S. Narasimachary, M. Eikerling: Hydrated arrays of acidic surface groups as model systems for interfacial structure and mechanisms in pems, The Journal of Physical Chemistry B 110 (2006) 20469-20477.
[23] A. Vishnyakov, A.V. Neimark: Molecular dynamics simulation of microstructure and molecular mobilities in swollen Nafion membranes, The Journal of Physical Chemistry B 105 (2001) 9586-9594.
[24] S.S. Jang, V. Molinero, T. Cagin, W.A. Goddard: Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence, The Journal of Physical Chemistry B 108 (2004) 3149-3157.
[25] D. Seeliger, C. Hartnig, E. Spohr: Aqueous pore structure and proton dynamics in solvated Nafion membranes, Electrochimica Acta 50 (2005) 4234-4240.
[26] J.Elliott, A.S. Elliott, G.Cooley: Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes, Physical Chemistry Chemical Physics 1 (1999) 4855-4863.
[27] D.A. Mologin, P.G. Khalatur, A.R. Khokhlov: Structural Organization of Water‐Containing Nafion: A Cellular‐Automaton‐Based Simulation, Macromolecular theory and simulations 11 (2002) 587-607.
[28] P.G. Khalatur, S.K. Talitskikh, A.R. Khokhlov: Structural Organization of Water‐Containing Nafion: The Integral Equation Theory, Macromolecular theory and simulations 11 (2002) 566-586.
[29] J.T. Wescott, Y. Qi, L. Subramanian, T.W. Capehart: Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes, The Journal of chemical physics 124 (2006) 134702.
[30] X. Guerrault, B. Rousseau, J. Farago: Dissipative particle dynamics simulations of polymer melts. I. Building potential of mean force for polyethylene and cis-polybutadiene, The Journal of chemical physics 121 (2004) 6538-6546.
[31] W. Jiang, J. Huang, Y. Wang, M. Laradji: Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics, The Journal of chemical physics 126 (2007) 044901.
[32] D. Long, P. Sotta: Nonlinear and plastic behavior of soft thermoplastic and filled elastomers studied by dissipative particle dynamics, Macromolecules 39 (2006) 6282-6297.
[33] M.A. Horsch, Z. Zhang, C.R. Iacovella, S.C. Glotzer: Hydrodynamics and microphase ordering in block copolymers: Are hydrodynamics required for ordered phases with periodicity in more than one dimension?, The Journal of chemical physics 121 (2004) 11455-11462.
[34] X. Cao, G. Xu, Y. Li, Z. Zhang: Aggregation of poly  (ethylene oxide)-poly (propylene oxide) block copolymers in aqueous solution: DPD simulation study, The Journal of Physical Chemistry A 109 (2005) 10418-10423.
[35] D. Wu, S.J. Paddison, J.A. Elliott: A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations, Energy & Environmental Science 1 (2008) 284-293.
[36] D. Wu, S.J. Paddison, J. A. Elliott: Effect of molecular weight on hydrated morphologies of the shortside - chain perfluorosulfonic acid membrane, Macromolecules 42 (2009) 3358-3367.
[37] G.Dorenbos,Y. Suga:Simulation of equivalent weight dependence of Nafion morphologies and predicted trends regarding water diffusion, Journal of Membrane Science 330 (2009) 5-20.
[38] Y.G. Kim, Y.C. Bae: A particle dynamic simulation for morphological aspects of proton exchange membranes, Macromolecular Research 21 (2013) 502-510.
[39] P.V. Komarov, I.N. Veselov, P.G. Khalatur: Selforganization of amphiphilic block copolymers in the presence of water: A mesoscale simulation, Chemical Physics Letters 605 (2014) 22-27.
[40] S.-i. Sawada, T. Yamaki, T. Ozawa, A. Suzuki, T. Terai, Y. Maekawa: Water Transport in Polymer Electrolyte Membranes Investigated by Dissipative Particle Dynamics Simulation, ECS Transactions 33 (2010) 1067-1078.
[41] P. Hoogerbrugge, J. Koelman: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL (Europhysics Letters) 19 (1992) 155.
[42] J. Koelman, P. Hoogerbrugge: Dynamic simulations of hard-sphere suspensions under steady shear, EPL (Europhysics Letters) 21 (1993) 363.
[43] P. Espanol, P. Warren: Statistical mechanics of dissipative particle dynamics, EPL (Europhysics Letters) 30 (1995) 191.
[44] P. Español: Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics, EPL (Europhysics Letters) 39 (1997) 605.
[45] R.D. Groot, T.J. Madden: Dynamic simulation of diblock copolymer microphase separation, The Journal of chemical physics 108 (1998) 8713-8724.
[46] R.D.Groot, K.Rabone:Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophysical journal 81 (2001) 725-736.
[47] S. Yamamoto, S.-a. Hyodo: A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane Nafion, Polymer journal 35 (2003) 519-527.
[48] M. Twister: A 623-dimensionally equidistributed uniform pseudo-random number generator-Matsumoto Nishimura-1998, DOI.
[49] B. Dünweg, W. Paul: Brownian dynamics simulations without Gaussian random numbers, International Journal of Modern Physics C 2 (1991) 817-827.
[50] X. Fan, N. Phan-Thien, S. Chen, X. Wu, T.Y. Ng: Simulating flow of DNA suspension using dissipative particle dynamics, Physics of Fluids (1994-present) 18 (2006) 063102.
[51] R. D.Groot, P.B.Warren: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation, Journal of Chemical Physics107 (1997) 4423.
[52] M.A. Seaton, R.L. Anderson, S. Metz, W. Smith, DL_MESO: highly scalable mesoscale simulations, Molecular Simulation 39 (2013) 796-821.
[53] M.Eikerling, A. Kornyshev, U. Stimming: Electrophysical properties of polymer electrolyte membranes: a random network model, The Journal of Physical Chemistry B 101 (1997) 10807-10820.
[54] W.Y. Hsu, T.D. Gierke: Ion transport and clustering in Nafion perfluorinated membranes, Jurnal of Membrane Science 13 (1983) 307-326.