[1] AC . Eringen: Linear theory of nonlocal elasticity and dispersion of plane-waves, International Journal of Engineering Science 10 (1972) 233–48.
[2] S. Iijima: Helical microtubules of graphitic carbon, Nature 354 (1991) 56–8.
[3] CR. Martin: Membrane-based synthesis of nanomaterials, Chemical Mater 8 (1996) 1739–46.
[4] KE. Drexler: Nanosystems: molecular machinery, manufacturing and computation, New York: Wiley (1992).
[5] J. Han, A. Globus, R. Jaffe , G. Deardorff : Molecular dynamics simulation of carbon nanotubebased gear, Nanotechnology 8 (1997) 95–102.
[6] A. Fennimore , TD. Yuzvinsky, WQ. Han, MS. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature (2003) 408–24.
[7] B. Bourlon, DC. Glattli, C. Miko, L. Forro, A. Bachtold: Carbon nanotube based bearing for rotational motions, Nano Letter 4 (2004) 709–12.
[8] V. Saji, H. Choe, K. Young: Nanotechnology in biomedical applications-a review, International Journal of Nano Biomater 3 (2010) 119–39.
[9] AC. Eringen: On differential-equations of nonlocal elasticity and solutions of screw dislocation and surface-waves, Journal of Apply Physics 54 (1983) 4703–10.
[10] AC. Eringen: Nonlocal polar elastic continua, International Journal of Engineering Science 10 (1972) 1–16.
[11] J. Peddieson, GR. Buchanan , RP. McNitt: Application of nonlocal continuum models to nanotechnology, International Journal of Engineering Science 41 (2003) 305–12.
[12] JN. Reddy: Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45 (2007) 288–307.
[13] J. Loya, J. Lopez-Puente, R. Zaera, J. Fernandez-Saez: Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model, Journal of Apply Physics 105 (2009) 044309.
[14] K. Kiani: Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique, Physica E 43 (2010) 387–97.
[15] T. Murmu, S. Adhikari: Non local effects in the longitudinal vibration of doublenanorod systems, Physica E 43 (2010) 415–22.
[17] T. Murmu, SC. Pradhan: Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model, Physica E 41 (2009) 1628–33.
[18] R. Ansari, A. Shahabodini, H. Rouhi: A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression, Composite Structures 100 (2013) 323–31.
[19] HT. Thai: A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science 52 (2012) 56–64
[20] JN. Reddy, SD. Pang: Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J Appl Phys 103 (2008) 1–16.
[21] M.A. De Rosa, N.M. Auciello, M. Lippiello: Dynamic stability analysis and DQM for beams with variable cross-section, Mechanics Research Communications 35 (2008) 187–192.
[22] A.A. Mahmoud, A. Ramadan, M.M. Nassar: Free vibration of non-uniform column using DQM, Mechanics Research Communications 38 (2011) 443–448
[23] C. Shu: Differential quadrature and its application in engineering, Springer, Berlin, (2000).
[24] C. Shu, BE. Richards: Application of generalized differential quadrature to solve two-dimensional incompressible Navier Stockes equations, International Journal for Numerical Methods in Fluids 15 ( 1992) 791-798.
[25] R. Bellman, BG. Kashef, J. Casti: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computation Physics 10 (1972) 4&52.
[26] C.W. Bert, M. Malik: Differential quadrature method in computational mechanics, A review, Applied Mechanics Reviews 9 (1996) 1-28.