[1] M.Sheikholeslami , H.R.Ashorynejad, D.D. Ganji, A. Kolahdooz: Investigation of Rotating MHD Viscous Flow and Heat Transfer between Stretching and Porous Surfaces Using Analytical Method, Hindawi Publishing Corporation Mathematical Problems in Engineering (2011).
[2] M. Sheikholeslami, H.R. Ashorynejad, D.D.Ganji, Yıldırım A: Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk, Scientia Iranica B 19 (2012) 437–442.
[3] D.D.Ganji, H.B.Rokni, M.G.Sfahani, S.S.Ganji : Approximate traveling wave solutions for coupled shallow water. Advances in Engineering Software 41 (2010) 956–961.
[4] M. Keimanesh, M.M.Rashidi, A.J. Chamkha,R.Jafari: Study of a third grade non- Newtonian fluid flow between two parallel plates using the multi-step differ-ential transform method, Computers and Mathematics with Applications 62 (2011) 2871–2891.
[5] M.Hatami, Kh.Hosseinzadeh, G. Domairry, M.T.Behnamfar: Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates. Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 2238-2245.
[6] K.Khanafer , K.Vafai , M. Lightstone: Buoyancy- driven heat transfer enhance-ment in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46 (2003) 3639–3653.
[7] E.Abu-Nada ,Z. Masoud , A.Hijazi:Natural convection heat transfer enhance-ment in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer 35 (2008) 657–665.
[8] M.M. Rashidi ,S.Abelman, N. Freidooni Mehr: Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, International Journal of Heat and Mass Transfer 62 (2013) 515–525.
[9] M. Sheikholeslami ,Sh. Abelman, D.D.Ganji: Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation, International Journal of Heat and Mass Transfer 79 (2014) 212–222.
[10] M.Sheikholeslami, M.Gorji-Bandpy ,D.D Ganji: MHD free convection in an eccentric semi-annulus filled with nanofluid, Journal of the Taiwan Institute of Chemical Engineers 45(2014)1204–16.
[11] M. Sheikholeslami, M.Gorji-Bandpy, D.D.Ganji S.Soleimani: MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM, Neural Comput & Applic 24 (2014) 873–882.
[12] A.Malvandi ,D.D. Ganji: Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field, International Journal of Thermal Sciences 84 (2014) 196-206.
[13] M. Hatami , D.D.Ganji: Heat transfer and nanofluid flow in suction and blowing process between parallel disks in presence of variable magnetic, Field Journal of Molecular Liquids190 (2014) 159–168.
[14] H.R. Ashorynejad, A.A. Mohamad, M.Sheikholeslami: Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. International Journal of Thermal Sciences 64 (2013) 240-250.
[15] D.A.Nield, A.V.Kuznetsov: Thermal instability in a porous medium layer saturated by a nanofluid, International, Journal of Heat and Mass Transfer 52 (2009) 5796–5801.
[16] W.A. Khan: Pop I. Boundary-layer flow of a nano-fluid past a stretching sheet, International Journal of Heat and Mass Transfer 53 (2010) 2477–2483.
[17] M.Sheikholeslami, M.Gorji-Bandpy, D.D.Ganji S.Soleimani: Thermal management for free convection of nanofluid using two phase model, Journal of Molecular Liquids 194(2014) 179–87
[18] M .Mahmood, S. Asghar, M.A.Hossain:Squeezed flow and heat transfer over a porous surface for viscous fluid, Heat Mass Transfer 44 (2007) 165–173
[19] G.Domairry, A .Aziz: Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method, Hindawi Publishing Corporation Mathematical Problems in Engineering (2009).
[20] M.Mustafa, T.Hayat, S.Obaidat: On heat and mass transfer in the unsteady squeezing flow between parallel plates, Meccanica 47(2012)1581–1589.