Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Document Type : Original Research Paper


1 Department of Chemical Engineering, Islamic Azad University,Central Tehran Branch, Tehran, I. R. Iran

2 Chemical Engineering Department, Kashan University, Kashan, I. R. Iran

3 Department of Material Engineering, University of Sistan and Baluchestan, Zahedan, I. R. Iran

4 Daneshestan Institute Of Higher Education, Saveh, Iran

5 Department of Chemistry, Sciences Faculty, Arak Branch, Islamic Azad University, Arak, I. R. Iran


Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally conductive solids into liquids. In this study, new model to predict nanofluid thermal conductivity based on Artificial Neural Network. A two-layer perceptron feedforward neural network and backpropagation Levenberg-Marquardt (BP-LM) training algorithm were used to predict the thermal conductivity of the nanofluid. To avoid the preprocess of network and investigate the final efficiency of it, 70% data are used for network training, while the remaining 30% data are used for network test and validation. Fe2O3 nanoparticles dispersed in waster/glycol liquid was used as working fluid in experiments. Volume fraction, temperature, nano particles and base fluid thermal conductivities are used as inputs to the network. The results show that ANN modeling is capable of predicting nanofluid thermal conductivity with good precision. The use of nanotechnology to enhance and improve the heat transfer fluid and the cost is exorbitant.It can play a major role in various industries, particularly industries that are involved in that heat.


[1]    B. Wang, L. Zhou, X. Peng: A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles, Int. J. Heat Mass Tran 46 (2003) 2665-2672.
[2]    P. Keblinski, S. R. Phillpot, S. U. S. Choi, J. A. Eastman: Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Tran 45 (2002) 855-863.
[3]   H. Masuda, A. Ebata, K. Teramae, N. Hishinuma: Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2) (1993).
[4]    S. U. S. Choi: Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows (1995), D. A. Siginer, H. P. Wang: The American Society of Mechanical Engineers, New York, FED-Vol. 231 / MD-(66) 99-105. Ultra-Fine Particles),” Netsu Bussei 4(4) 227-233.
[5]    R. Chein, J. Chuang: Experimental Microchannel Heat Sink Performance Studies using Nanofluids, Int. J. Therm. Sci 46(2007) 57- 66.
[6]       J. Lee, I. Mudawar: Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in MicroChannels, Int. J. Heat Mass Tran 50 (2007) 452-463.
[7]    J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, L. J. Thompson: Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett 78 (2001) 718-720.
[8]    W. Yu, D. M. France, J. L.Routbort, S. U. S. Choi: Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Eng. 29 (2008) 432-460.
[9]    J. M. Romano, J. C. Parker, Q. B. Ford: Application Opportunities for Nanoparticles Made from the Condensation of Physical Vapors, Adv. Pm. Part. (1997) 12-13.
[10]   C. H. Chon, K. D. Kihm, S. P. Lee, S. U. S. Choi: Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3), (2005).
[11]   S. K. Das, N. Putra, P. Thiesen, W. Roetzel: Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids, J. Heat Transfer 125 (2003) 567-574.
[12]   C. H. Li, G. P. Peterson: Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions (Nanofluids), J. Appl. Phys. 99 (2006) 084314.
[13]   B. C. Pak, Y. I. Cho: Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer 11(1998) 151 -170.
[14]   K. S. Hwang, S. P. Jang, S. U. S. Choi: Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 (2009).
[15]   S. Z. Heris, M. N. Esfahany, S. Etemad: Experimental Investigation of Convective Heat Transfer of Al Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Tran. 52 (2007) 193-199.
[16]   R.L. Hamilton, O.K. Crosser: Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals 1 (1962) 182–191.
[17]   F.J. Wasp: Solid–Liquid Flow Slurry Pipeline Transportation, Trans. Tech. Pub., Berlin (1977).
[18]   J.C. Maxwell-Garnett: Colours in metal glasses and in metallic films, Philos. Trans. Roy. Soc. A 203 (1904) 385–420.
[19]   D.A.G. Bruggeman: Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Annalen der Physik. Leipzig 24 (1935) 636–679.
[20]   B.X. Wang, L.P. Zhou, X.F. Peng: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer 46 (2003) 2665–2672.
[21]   W. Yu, S.U.S. Choi: The role of interfacial layer in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model, J. Nanoparticles Res. (2003) 167–171.
[22]   L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, A.J. Eastman: Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer 47 (2004) 4277–4284.
[23]   D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das: Model for conduction in nanofluids, Phys. Rev. Lett. 93 (2004) 144301-1– 144301-4.
[24]   R. Prasher, P. Bhattacharya, P.E. Phelan: Brownian-motion-based convectiveconductive model for the effective thermal conductivity of nanofluid, ASME J.Heat Transfer 128 (2006) 588–595.
[25]   H.E. Patel, T. Pradeep, T. Sundarrajan, A. Dasgupta, N. Dasgupta, S.K. Das: A micro-convection model for thermal conductivity of nanofluid, Pramana–J. Phys. 65 (2005) 863–869.
[26]   S.K. Das, et al: Reply, Phys. Rev. Lett. 95 (2005) 019402.