[1] S. Das, N. Putra, P. Thiesen, R. Roetzel: Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer 125 (2003) 567-574.
[2] S. Murshed, K. Leong, C. Yang: A combined model for the effective thermal conductivity of nanofluids, Appl. Therm. Eng 29 (2009) 2477-2483.
[3] T. Teng, Y. Hung, T. Teng, H. Mo, H. Hsu: The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Therm. Eng 30 (2010) 2213-2218.
[4] H. Safikhani, A. Abbassi: Effects of tube flattening on the fluid dynamic and heat transfer performance of nanofluid flow, Adv. Powder Technolog 25 (3) (2014) 1132-1141.
[5] H. Safikhani, A. Abbassi, A. Khalkhali, M. Kalteh: Multi-objective optimization of nanofluid flow in flat tubes using CFD, Artificial Neural Networks and genetic algorithms, Adv. Powder Technolog 25(5) (2014) 1608-1617.
[6] M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting: Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow 32 (2011) 107–116.
[7] R. Lotfi, Y. Saboohi, A. Rashidi: Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, Int. Commun. Heat Mass Transfer 37 (2010) 74–78.
[8] M. R. Salimpour, H. Gholami: Effect of inserting coiled wires on pressure drop of R-404A condensation, International Journal of Refrigeration 40 (2014) 24-30.
[9] R. Kumar, K. N. Agrawal, S. N. Lal, H. K. Varma: An experimental study on condensation enhancement of R-22 by the turbulence promoter. ASHRAE Trans. 111 (2005) 18-25.
[10] V. Hejazi, M. A. Akhavan-Behabadi, A. Afshari: Experimental investigation of twisted tape inserts performance on condensation heat transfer enhancement and pressure drop, Int. Commun. Heat Mass Transfer 37 (2010) 1376-1387.
[11] M. R. Salimpour, S. Yarmohammadi: Effect of twist-ed tape inserts on pressure drop during R-404A condensation. Int. J. Refrigeration 35 (2012a) 263-269.
[12] M. R. Salimpour, S. Yarmohammadi: Heat transfer enhancement during R-404A vapor condensation in swirling flow. Int. J. Refrigeration 35 (2012b) 2014-2021.
[13] K. N. Agrawal, A. Kumar, M. A. Akavan-Behabadi, H. K. Varma: Heat transfer augmentation by coiled wire inserts during forced convection condensation of R-22 inside horizontal tubes. Int. J. Multiphase Flow 24 (1998) 635-650.
[14] M. A. Akhavan - Behabadi, M. R. Salimpoor, R . Kumar , K. N. Agrawal: Augmentation of forced convection condensation heat transfer inside a horizontal tube using spiral spring inserts, J. Enhanc. Heat Transfer 12 (2005) 373-384.
[15] M. A. Akhavan-Behabadi, M.R. Salimpour, V. A. Pazouki: Pressure drop increase of forced convective condensation inside coiled wire inserted tube. Int. Commun. Heat Mass Transfer 35 (2008) 1220-1226.
[16] S. Eiamsa-ard, K. Kiatkittipong: Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid, Appl. Therm. Eng 70 (2014) 896-924.
[17] M. Manninen, V.Taivassalo, S. Kallio: On the mixtu-re model for multiphase flow VTT Publications (1996).
[18] L. Schiller, A. Naumann:A drag coefficient corre- lation, Z. Ver. Deutsch. Ing 77 (1935) 318-320.
[19] B. Pak, Y. Cho Y: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11 (1998) 151–170.
[20] Y. Xuan, W. Roetzel: Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.
[21] N. Masoumi, N. Sohrabi, A. Behzadmehr: A new model for calculating the effective viscosity of nanofluids, J. Appl. Physics 42 (2009) 055501.
[22] C. Chon, K. Kihm, S. Lee, S. Choi: Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity Enhancement, J. Appl. Physics 87 (2005) 153107 (3).
[23] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer 46 (2003) 3639-3653.
[24] E. Ebrahimnia - Bajestan, H. Niazmand, W. Duangthongsuk, S. Wongwises: Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, Int. J. Heat Mass Transfer 54 (2010) 4376–4388.
[25] S. Mirmasoumi, A. Behzadmehr: Effect of nano particles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow 29 (2008) 557-566.
[26] M. Shariat, A. Akbarinia, A. Hossein Nezhad, A. Behzadmehr, R. Laur: Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts, Appl. Therm. Eng 31 (2011) 2348-2359.