[1] S. Kim, H. Chung, H. Jeong, B. Lee, B. Ochirkhuyag, J. Lee, H. Choi: The study of heat transfer for nanofluid with carbon nano particle in an exhaust gas recirculation (EGR) cooler, Heat and Mass Transfer 49 (2013) 1051-1055.
[2] R. Lotfi, A. M. Rashidi, A. Amrollahi: Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger, International Communications in Heat and Mass Transfer 39 (2012) 108-111.
[3] K. Y. Leong, R. Saidur, T. M. Mahlia, Y. H. Yau: Modeling of shell and tube heat recovery exchanger operated with nanofluid based coolants, International Journal of Heat and Mass Transfer 55 (2012) 808-816.
[4] L. Godson, K. Deepak, C. Enoch, B. Jefferson, B. Raja: Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Archives of Civil and Mechanical Engineering 14 (2014) 489-496.
[5] R. Aghayari, H. Maddah, F. Ashori, A. Hakiminejad, M. Aghili: Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow, Heat and Mass Transfer 51 (2014) 301-306.
[6] D. Madhesh, S. Kalaiselvam: Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant, Heat and Mass Transfer 50 (2014) 1597-1607.
[7] A. Hussein, R. A. Bakar, K. Kadirgama, K. V. Sharma: Heat transfer augmentation of a car radiator using nanofluids. Heat and Mass Transfer 50 (2014) 1553-1561.
[8] J. Cao, Y. Ding, C. Ma: Aqueous Al2O3 nanofluids: the important factors impacting convective heat transfer Heat and Mass Transfer 50 (2014) 1639-1648.
[9] Y. S. Son , J. Y. Shin: Performance of a shell-and-tube heat exchanger with spiral baffle plates, KSME International Journal 15 (2001) 1555-1562.
[10] B. K. Sonage, P. Mohanan: Heat transfer and pressure drop characteristic of zinc–water nanofluid, Heat and Mass Transfer 51 (2014) 521-527.
[11] C. Pang, J. W. Lee, Y. T. Kang: Review on combined heat and mass transfer characteristics in nanofluids, International Journal of Thermal Sciences 87 (2015) 49-67.
[12] D. Q. Kern: Process heat transfer, McGraw-Hill, New York (1950).
[13] R. W. Serth, T. G. Lestina: Process Heat Transfer, Second ed, Academic Press, Boston (2014).
[14] K. J. Bell: Delaware method for shell-side design, In: Kakaç S, Berger A, Mayinger F (eds) Heat exchangers: thermal-hydraulic fundamentals and design. Hemisphere (1981) 581-618.
[15] M. Kahani, S. Zeinali Heris, S. M. Mousavi: Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube, Heat and Mass Transfer 50 (2014) 1563-1573.
[16] X. Wang, A. S. Mujumdar: Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Sciences 46 (2007) 1-19.
[17] G. Huminic, A. Huminic: A: Heat transfer character-istics in double tube helical heat exchangers using nanofluids, International Journal of Heat and Mass Transfer 54 (2011) 4280-4287.
[18] H. A. Mohammed, H. A. Hasan, M. A. Wahid: Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts, International Communications in Heat and Mass Transfer 40 (2013) 36-46.
[19] B. H. Chun, H. U. Kang, S. H. Kim: Effect of alumina nanoparticles in the fluid on heat transfer in double-pipe heat exchanger system, Korean Journal of Chemical Engineering 25 (2008) 966-971.
[20] M. Akhtari, M. Haghshenasfard, M. R. Talaie: Numerical and Experimental Investigation of Heat Transfer of α-Al2O3/Water Nanofluid in Double Pipe and Shell and Tube Heat Exchangers, Numerical Heat Transfer, Part A: Applications 63 (2013) 941-958.
[21] B. Farajollahi, S. G. Etemad, M. Hojjat: Heat transfer of nanofluids in a shell and tube heat exchanger, International Journal of Heat and Mass Transfer 53 (2010) 12-17.
[22] M. M. Elias, I. M. Shahrul, I. M. Mahbubul, R. Saidur, N. A. Rahim: Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid, International Journal of Heat and Mass Transfer 70 (2014) 289-297.
[23] A. Ghozatloo, A. Rashidi, M. Shariaty-Niassar: Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal and Fluid Science 53 (2014) 136-141.
[24] J. Taborek: Thermal and hydraulic design of heat exchangers, In: Hewitt GF (ed) Handbook of Heat Exchanger Design 3 (2002).
[25] R. Mukherjee: Use double-segmental baffles in the shell-and-tube heat exchangers, Chem Eng Progress 88 (1992) 47–52.
[26] M. Saffar-Avval, E. Damangir: A general correlation for determining optimum baffle spacing for all types of shell and tube exchangers, International Journal of Heat and Mass Transfer 38 (1995) 2501-2506.
[27] B. Khalifeh Soltan, M. Saffar-Avval, E. Damangir: Minimizing capital and operating costs of shell and tube condensers using optimum baffle spacing, Applied Thermal Engineering 24 (2004) 2801-2810.
[28] D. Eryener: Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers, Energy Conversion and Management 47(2006) 1478-1489.
[29] E. Ozden, I. Tari: Shell side CFD analysis of a small shell-and-tube heat exchanger, Energy Conversion and Management 51 (2010) 1004-1014.
[30] R. Mukherjee: Use double-segmental baffles in the shell-and-tube heat exchanger, chem Eng progress88(1992) 47–52.
[31] A. Sasmito, J. Kurnia, A. Mujumdar: Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes, Nanoscale Research Letters 6 (2011) 1-14.
[32] A. K. Tiwari, P. Ghosh, J. Sarkar, H. Dahiya, J. Parekh: Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids, International Journal of Thermal Sciences 85 (2014) 93-103.
[33] Y. Xuan, W. Roetzel: Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer 43 (2000) 3701-3707.
[34] B. C. Pak, Y. I. Cho: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1998) 151-170.
[35] A. A. Minea: Uncertainties in modeling thermal conductivity of laminar forced convection heat transfer with water alumina nanofluids, International Journal of Heat and Mass Transfer 68 (2014) 78-84.
[36] M. Keshavarz Moraveji, M. Hejazian: Modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid with computational fluid dynamics, International Communications in Heat and Mass Transfer 39 (2012) 1293-1296.
[37] A. Kamyar, R. Saidur, M. Hasanuzzaman: Application of Computational Fluid Dynamics (CFD) for nanofluids, International Journal of Heat and Mass Transfer 55 (2012) 4104-4115.
[38] O. Kaya: Numerical study of turbulent flow and heat transfer of Al2O3–water mixture in a square duct with uniform heat flux, Heat and Mass Transfer 49 (2013) 1549-1563.
[39] R. R. T. Karuppa, G. Srikanth: Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow using CFD, Thermal Science 16 (2012) 1165-1174.
[40] G. Towler, R. Sinnott: Chemical engineering design: principles, practice and economics of plant and process design. Butterworth-Heinemann (2008).
[41] B. Sahin, G. G. Gültekin, E. Manay, S. Karagoz: Experimental investigation of heat transfer and pressure drop characteristics of Al2O3–water nanofluid, Experimental Thermal and Fluid Science 50 (2013) 21-28.