[1] M. E. Conner, E. Baglietto, A. M. Elmahdi, CFD methodology and validation for single-phase flow in PWR fuel assemblies, Nuclear Engineering and Design 240 (2010) 2088–2095.
[2] S. Tóth, A. Aszódi, Calculations of coolant flow in a VVER-440 fuel bundle with the code ANSYS CFX 10.0, Proceedings of the Workshop on Modeling and Measurements of Two-Phase Flows and Heat Transfer in Nuclear Fuel Assemblies, Stockholm, Sweden (2006).
[3] M. R. Abdi, M. Asgari, Kh. Rezaee Ebrahim Saraee, M. Talebi, Numerical Simulation of Split Vane in a 60 Fuel Rod Bundle of VVER-440 Reactor and Survey the Effect of Large Length Split Vane (LLSV) and Half-Length Split Vane (HLSV) on Heat Transfer Distribution. World Applied Sciences Journal 18 (7) (2012) 909-917.
[4] B. C. Rahimi, G. Jahanfarnia, Thermal-hydraulic core analysis of the VVER-1000 reactor using a porous media approach, Journal of Fluids and Structures 51 (2014) 85–96.
[5] M. Jabbari, k. Hadad, G. R. Ansarifar, Z. Tabadar, Power calculation of VVER-1000 reactor using a thermal method, appliedto primary–secondary circuits, Annals of Nuclear Energy 18 (77) (2015) 129-132.
[6] S.U.S. Choi, Enhancing thermal conductivity of fluid with nanoparticles, ASME FED 231/MD. 66 (1995) 99–103.
[7] P. Keblinski, S. R. Phillpot, S.U.S. Choi, J. A. Eastman, Mechanisms of heat flow in suspensions of nano-sized particles(nanofluid), Int. J. of Heat and Mass Transfer 45 (2002) 855–863.
[8] J. A. Eastman, S. R. Phillpot, S.U.S. Choi, P. Keblinski, Thermal transport in nanofluids, Annual Review of Materials Research 34 (2004) 219–246.
[9] O. Ghaffari, A. Behzadmehr, H. Ajam, Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach, International Communications in Heat and Mass Transfer 37 (10) (2010) 1551–1558.
[10] A. Behzadmehr, M. Saffar Avval, N. Galanis, Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. of Heat and Fluid Flow 28 (2) (2007) 211–219.
[11] C. Abdellahoum, A. Mataoui, H. Oztop, Turbulent forced convection of nanofluid over a heated shallow cavity in a duct, Annals of Nuclear Energy 277 (2015) 126-134.
[12] A. Moghadassi, E. Ghomi, F. Parvizian, A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer, International Journal of Thermal Sciences 92 (2015) 50–57.
[13] J. Buongiorno, B. Truong, Preliminary study of water- based nanofluid coolants for PWRs, Transactions of the American Nuclear Society 92 (2005) 383–384.
[14] K. Hadad, A. Hajizadeh, K. Jafarpour, B.D. Ganapol, Neutronic study of nanofluids application to VVER-1000, Annals of Nuclear Energy 37(11) (2010) 1447–1455.
[15] E. Zarifi, G. Jahanfarnia, F. Veysi, Thermal–hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach, Annals of Nuclear Energy 51 (2013) 203–212.
[16] K. Hadad, A. Rahimian, M. R. Nematollahi, Numerical study of single and two-phase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor, Annals of Nuclear Energy 60 (2013) 287-294.
[17] O. Ltd, User guide, http://www.openfoam.com /docts/user/; (2011).
[18] S. P. Janga, S.U.S. Choi, (Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters 84 (2004) 4316-4318.
[19] C. H. Chon, K. D. Kihm, S. P. Lee, S.U.S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters 87 (2005) 153107–153110.
[20] H. A. Mintsa, G. Roy, C. T. Nguyen, D. Doucet, New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids, Int. J. of Therm. Sci 48 (2009) 363–371.
[21] N. Masoumi, N. Sohrabi, A. A. Behzadmehr, New Model for Calculating the Effective Viscosity of Nanofluids, Journal of Physics D: Applied Physics 42 (2009) 55501–55506.
[22] B. C. Pak, Y. I. Cho, Hydrodynamic and HeatTransfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer 11 (1998) 151–170.