[1] M. Chandrasekar, S. Suresh and A. Chandra Bose:Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, J. of Experimental Thermal and Fluid Science 34(2010) 210–216.
[2] W. Duangthongsuk, S. Wongwises: Measure- ment of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, J. of Exp. Therm. Fluid Sci, 33(2009) 706–714.
[3] A. J. Schmidt, M. Chiesa, D. H. Torchinsky, J. A. Johnson, K. A. Nelson and G. Chen: Thermal conductivity of nanoparticle suspensions in insulating media measured with a transient optical grating and a hotwire, J. of Applied Physics 103(2008) 083529-1–083529-5.
[4] E. Hrishikesh, T. Patel, S. Sundararajan, K. Das: An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids, J. of Nanopart Res 12(2010) 1015–1031.
[5] S. Ravikanth, D. Vajjha, K. Das: Experimental determination of thermal conductivity of three nanofluids and development of new correlations, J. of Heat and Mass Transfer 52(2009) 4675–4682.
[6] W. Yu, H. Xie, L. Chen, Y. Li: Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, J. of Thermochimica Acta 491(2009) 92-96.
[7] I. Palabiyik, Z. Musina, S. Witharana, Y. Ding: Dispersion stability and thermal conductivity of propylene glycol-based nanofluids, J. of Nanopart Res 13(2011) 5049–5055.
[8] S. Lee, S.U.S., Choi, S. Li, J.A. Eastman: Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. of Heat Transf 121(1999) 280–288.
[9] A. Einstein, N.B. Eine, D. Moleküldimensionen, J. of Ann. Phys 324(1906) 289–306.
[10] H. Brinkman: The viscosity of concentrated suspensions and solutions, J. of Chem. Phys 20 (1952) 571.
[11] G. Batchelor: The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. of Fluid Mech 83(1977) 97–117.
[12] J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford 1881.
[13] R.L. Hamilton, O.K. Crosser: Thermal conductivity of heterogeneous two-component systems, Ind Eng Chem Fundam 1(1962) 187–191.
[14] D.A.G. Bruggemen: Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, J. of Ann. Phys 24(1935) 636–679.
[15] D. J. Jeffrey, Conduction Through a Random Suspension of Spheres, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 335 (1973) 355–367.
[16] E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey and Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, J. V. Selinger: Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory, Physical Review E 76(2007) 061203-1–061203-15.
[17] R.S. Vajjha, D.K. Das, Measurement of thermal conductivity of Al2O3 nanofluid and development of a new correlation, T. (Ed.), Proceedings of 40th Heat Transfer and Fluid Mechanics Institute, Sacramento, Marbach, CA(2008)14.
[18] J. Koo, C. Kleinstreuer: A new thermal conductivity model for nanofluids, J. of Nanoparticle 6(2004) 577–588.
[19] M. Moosavi, E.K. Goharshadi, A. Youssefi: Fabrication characterization and measurement of some physicochemical properties of ZnO nanofluids, Int. J. Heat Fluid Flow 31(2010) 599-605.
[20] M. Kole, T.K. Dey: Thermophysical and pool boiling characteristics of ZnO-ethylene glycol nanofluids, Int. J. Thermal Sciences (2012) 1-10.
[21] Y. Xuan, Q. Li, W. Hu: Aggregation structure and thermal conductivity of nanofluids, J. of AIChE, 49(2003) 1038–1043.
[22] D. Lee: Thermophysical properties of interfacial layer in nanofluids, Langmuir 23(2007) 6011–6018.
[23] Y. Feng, Y. Boming, P. Xu, M. Zou: The effective thermal conductivity of nanofluids based on nanolayer and aggregation of nanoparticles, J. Phys. D: Appl. Phys 40(2007) 3164-3171.
[24] K. Leong, C. Yang, and S. M. S. Murshed: A Model for the Thermal Conductivity of Nanofluids-The Effect of Interfacial Layer, Journal of Nanoparticle Research 8(2006) 245–254.