The Impact of Nanoparticles on Forced Convection in a Serpentine Microchannel

Document Type : Original Research Paper


Mechanical Engineering Department, Iran University of Science and Technology (IUST), Tehran, I.R. Iran


In this study heat transfer and fluid flow characteristics of Al2O3/water nanofluid in a serpentine microchannel is numerically investigated. A constant heat flux is applied on microchannel wall and a single-phase model has been adopted using temperature-dependent properties. The effects of pertinent factors such as Reynolds number (Re=10, 20, 50 and 100), particle volume fraction (𝛷=0(distilled water), 2, 4 and 8%) and heat flux (q=5, 10 and 15 W/cm2), on the velocity and temperature field, average heat transfer coefficient (havg), pressure drop (Δp), and thermal-hydraulic performance (η) are evaluated. The results show that the use of nanofluid causes increased velocity gradient near the wall which is more remarkable for φ = 8%. The results also reveal that the heat transfer rate increases as nanoparticle volume fraction and Reynold number increase and a maximum value 51% in the average heat transfer coefficient is detected among all the considered cases when compared to basefluid (i.e., water). It is found that a higher heat flux leads to heat transfer enhancement and reduction in pressure drop. Finally, thermal-hydraulic performance is calculated and it is seen that the best performance occurs for Re =10 and φ = 4%.


[1]  C. Yang, J. Wu, H. Chein , S. Lu, Friction characteristics of water, R-134a, and air in small tubes, Microscale Thermophysical Engineering 7(2003) 335-348.
[2]  S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, American Society of Mechanical Engineers 66 (1995) 99–105.
[3]  X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermo- physics and Heat Transfer 13(1999) 474-480.
[4]  Y. Xuan, Q. Li, Heat transfer enhancement of nano- fluids, International  Journal of  Heat and Fluid Flow 21 (2000) 58-6421 (2000) 58-64.
[5]  S. Lee, S.U.S. Choi, Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer 121 (1999) 280-289.
[6]  I. Chopkar, S. Sudarshan, P. K. Das, I. Manna, Effect of particle size on thermal conductivity of nanofluid, Metallurgical and Material Transaction 39 (2008) 1535-1542.
[7]  C. H. Li, G. P. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics 99 (2006) 084314.
[8]   S. K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer 125 (2003) 567-574.
[9]   T. P. Teng, Y. H. Hung, T. C. Teng, J. H. Chen, Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow, Nanoscale Research. Letter 6 (2011) 408.
[10]  P. R. Mashaei, S. M. Hosseinalipour, M.Bah- iraei, Numerical investigation of nanofluid forced convection in channels with discrete heat sources, Journal of Applied Mathematics(2012)     259-284.
[11]  P. R. Mashaei, S. M. Hosseinalipour, M.Bah- iraei, M.Dirani, 3-D numerical simulation of nanofluid laminar forced convection in a channel with localized heating, Australian  Journal of  Basic and Applied Science 6 (2012) 479-489.
[12]  Y.T, Yang, F.H. Lai, Numerical study of flow and heat transfer characteristics of alumina-water nanofluids  in a microchannel using the lattice Boltzmann method, International Communication of Heat and Mass Transfer 38 (2011) 607-614.
[13]  H.A. Mohammed, G. Bhaskaran , N.H. Shuaib , R. Saidur, Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger, Superlattices Microstructure 50 (2011) 215-233.
[14]  C.H. Chen, C.Y. Ding, Study on the thermal behavior and cooling performance of a nanofluid-cooled microchannel heat sink, International Journal of Thermal Science 50 (2011) 378-384.
[15]  E.M. Tokit, H.A. Mohammed, M.Z. Yusoff, Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids, International Communication of Heat and Mass Transfer 39 (2012) 1595-1604.
[16]  J. Koo,  C. Kleinstreuer, Laminar nanofluid flow in microheat-sinks, International  Journal of  Heat and Mass Transfer 48 (2005) 2652-2661.
[17]  A. Raisi, and B.Ghasemi, M. Aminossadati, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numerical Heat Transfer-Part A 59 (2011) 114-129.
[18]  M. Kalteh, A. Abbassi , M. Saffar-Avval , J. Harting, Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, International Journal of Heat and Fluid Flow 32 (2011) 107-116.
[19]  R. Chein, J.Chuang, Experimental microchannel heat sink performance studies using nanofluids, International. Journal of Thermal Science 46 (2007) 57-6646 (2007) 57-66.
[20]  B. Fani, A. Abbassi, M. Kalteh, Effect of nano particles size on thermal performance of nanofluid in a trapezoidal microchannel-heat-sink, International Communications in Heat and Mass Transfer 45 (2013) 155–161.
[21]  M.I. Hassan, Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid, Applied Thermal Engineering 63 (2014) 598–607.
[22]  S. Halelfadl, A. M. Adhame, N. Mohd-Ghazalib, T. Maréa, P.  Estelléc, R. Ahmad, Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid, Applied Thermal Engineering 62 (2014) 492–499.
[23]  P. K. Singh, P. V. Harikrishna, T. Sundararajan ,S. K. Das, Experimental and Numerical Investigation into the Heat Transfer Study of Nanofluids in Microchannel, Journal of Heat Transfer 133(2011) 701-709.
[24]  J.Y Jung, H. S. Oh, H.Y. Kwak, Forced conv-   ective heat transfer of nanofluids in microchannels, International  Journal of  Heat and Mass Transfer 52 (2009) 466-472.
[25]  C.J. Ho, L.C. Wei, Z.W. Li, An experimental Investigation of forced convective cooling performance of a microchannel heat sink with Al2O3-Water nanofluid, Applied Thermal Engineering 30 (2010) 96-103.
[26]  Y. Lasbet, B. Auvity, C. Castelain, H. Peerhossaini, Thermal and hydraulic performance of chaotic microchannel: application to fuel cell cooling, Heat Transfer Engineering  28 (2007) 795-803.
[27]  G.L. Morini, Viscous heating in liquid flows in  micro -channel, International Journal of Heat and Mass Transfer 48 (2005) 3637-3647.
[28]  A. P. Saamito, J. C. Kurnia, A. S. Mujumdar, Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tube, Nanoscale Research Letter 6 (2011) 376.
[29]  E.Abu-Nada, Effect of variable and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection, International Journal of Heat and Fluid Flow 30 (2009) 679-690.
[30]  C.T. Nguyen, F. Desgranges, G.Roy, N. Glanis, T. Mare, S. Boucher, H. Angue Minsta, Temperature and particle size dependent viscosity data for water-based nanofluids-hystresis phenomenon, International Journal of Heat and Fluid Flow 28 (2007) 1492-1506.
[31]  C.H. Chon, K.D. Kihm, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letter 87 (2005) 153107-1:153107-3.
[32]  S. Baheri Islami, B. Dastvareh, R. Gharraei, Numerical study of hydrodynamic and heat transfer of nanofluid flow in microchannels containing micromixer, International Communication of Heat and Mass Transfer 43 (2013) 146-154.