[1] R. Bacon, Growth, Structure, and Properties of Graphite Whiskers, Appl. Phys. Lett. 31(2) (1960) 283-290.
[2] A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Crystal Growth 32 (3) (1976) 335-349.
[3] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
[4] Y.X. Liang, T.H. Wang, A double-walled carbon nanotube field-effect transistor using the inner shell as its gate, Physica E 23 (2004) 232-236.
[5] C. Klinke, A. Afzali, Interaction of solid organic acids with carbon nanotube field effect transistors, Chemical Physics Letters 430 (2006) 75-79.
[6] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes Nature 391(1998) 62–64.
[7] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381 (1996) 678-680.
[8] S.J. Tans, R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393 (1998) 49-52.
[9] J.M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury, N. Weiss, Carbon nanotube films as electron field emitters, Carbon 40 (2002) 1715-1728.
[10] J. Suehiro, G. Zhou, H. Imakiire, W. Ding, M. Hara, Controlled fabrication of carbon nanotube NO2 gas sensor using dielectrophoretic impedance measurement, Sensors and Actuators B 108 (2005) 398-403.
[11] A. Thess et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science 273, (1996), 483-487.
[12] R. Andrews, D. Jacques, A. M. Roa, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, `Continuous Production of Aligned Nanotubes: a Step Closer to Commercial Realization’, Chem. Phys. Lett. 303 (1999) 467-474.
[13] B.C. Liu, S.C. Lyu, S.I. Jung, H.K. Kang, C.-W. Yang, Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe-Mo/MgO catalyst, Chemical Physics Letters 383 (2004) 104-108.
[14] Y.S. Cho, G. Seok Choi, G. S. Hong, D. Kim, Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition , Journal of Crystal Growth, 243 (2002) 224-229.
[15] W. W. Liu, A. Aziz, S.P. Chai, A.R. Mohamed, Tye Ching-Thian, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesized by the chemical vapour decomposition, Physica E 43 (2011) 1535-1542.
[16] A. C. Lysaght, W. K. S. Chiu, Modeling of the carbon nanotube chemical vapor deposition process using methane and acetylene precursor gases Nanotechnology,19(16) (2008) 165607-165614.
[17] L. Pan, Y. Nakayama, H. Ma, Modelling the growth of carbon nanotubes produced by chemical vapor deposition, Carbon 49 (2011) 854-861.
[18] B. Zahed, T. Fanaei S., H. Ateshi, Numerical analysis of inlet gas-mixture flow rate effects on carbon nanotube growth rate, Transport Phenomena in Nano and Micro Scales 1 (2013) 38-45 .
[19] B. Zahed, T. Fanaei S., A.Behzadmehr, H. Atashi, Numerical Study of Furnace Temperature and Inlet Hydrocarbon Concentration Effect on Carbon Nanotube Growth Rate, International J. of Bio-inorganic hybrid nanomaterials 2(1) (2013) 329-336
[20] M. Grujicic, G. Cao, B. Gersten, Reactor length-scale modeling of chemical vapor deposition of carbon nanotubes, J. Mater. Sci. 38(8) (2003) 1819–30.
[21] H. Endo, K. Kuwana, K. Saito, D. Qian, R. Andrews, E.A. Grulke, CFD prediction of carbon nanotube production rate in a CVD reactor, Chem.Phys. Lett. 387 (2004) 307–311.
[22] K. Kuwana, K. Saito, Modeling CVD synthesis of carbon nanotubes: nanoparticle formation from ferrocene, Carbon 43(10) (2005) 2088–95.
[23] A.A. Puretzky, D.B. Geohegan, S. Jesse, I.N. Ivanov, G. Eres, In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A 81(2) (2005) 223–40.
[24] Chris R. Kleijn, C. Werner, Modeling of chemical vapor deposition of tungsten films, Vol 2, Birkhauser, Berlin, 1993.
[25] J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology, Prentice Hall Inc., NewJersy, 2000.