[1] X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Science 46 (2007) 1-19.
[2] J. Choi, Y. Zhang, Numerical simulation of laminar forced convection heat transfer of Al2O3-water nanofluid in a pipe with return bend, International Journal of Thermal Science 55 (2012) 90-102.
[3] P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, International Journal of Thermal Science 48 (2009) 290-302.
[4] R.J. Goldstein, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh, R. Mittal, Heat transfer-A review of 2005 literature, International Journal of Heat and Mass Transfer 53 (2010) 4397-4447.
[5] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer 46 (2003) 3639-3653.
[6] K.C. Lin, A. Violi, Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity, International Journal of Heat and Fluid Flow 31 (2010) 236-245.
[7] G.A. Sheikhzadeh, A.Arefmanesh, M.H. Kheirkhah, R. Abdollahi, Natural convection of Cu–water nanofluid in a cavity with partially active side walls, European Journal of Mechanics - B/Fluids 30 (2011) 166-176.
[8] M. Jahanshahi, S.F. Hosseinizadeh, M. Alipanah, A. Dehghani, G.R. Vakilinejad, Numerical simulation of free convection based on experimental measured conductivity in a square cavity using Water/SiO2 nanofluid, International Communications in Heat and Mass Transfer 37 (2010) 687-694.
[9] A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer characteristics of copper-water nanofluid in a differentially heated square cavity with different viscosity models, Journal of Enhanced Heat Transfer 15 (2008) 273-287.
[10] C.J. Ho, M.W. Chen, Z.W. Li, Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, International Journal of Heat and Mass Transfer 51 (2008) 4506-4516.
[11] E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids, International Communications in Heat and Mass Transfer 35 (2008) 657-665.
[12] N. Putra, W. Roetzel, S.K. Das, Natural convection of nano-fluids, Heat and Mass Transfer 39 (2003) 775-784.
[13] C.H. Li, G.P. Peterson, Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (Nanofluids), Advances in Mechanical Engineering (2010) doi:10.1155/2010/742739.
[14] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study, International Journal of Thermal Science 49 (2010) 1345-1353.
[15] A.G.A. Nnanna, Experimental model of temperature-driven nanofluid, Journal of Heat Transfer 129 (2007) 697-704.
[16] K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, International Journal of Heat and Mass Transfer 54 (2011) 4410-4428.
[17] E. Abu-Nada, A.J. Chamkha, Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid, International Journal of Thermal Science 49 (2010) 2339-2352.
[18] E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures, International Journal of Thermal Science 49 (2010) 479-491.
[19] B.C. Sahoo, R.S. Vajjha, R. Ganguli, G.A. Chukwu, D.K. Das, Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations, Petroleum Science and Technology 27 (2009) 1757-1770.
[20] R.S. Vajjha, D.K. Das, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, International Journal of Heat and Mass Transfer 52 (2009) 4675-4682.
[21] R.S. Vajjha, D.K. Das, Specific heat measurement of three nanofluids and development of new correlations, Journal of Heat Transfer 131 (2009) 1-7.
[22] R.S. Vajjha, D.K. Das, B.M. Mahagaonkar, Density measurement of different nanofluids and their comparison with theory, Petroleum Science and Technology 27 (2009) 612-624.
[23] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer 11 (1999) 151-170.
[24] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat and Mass Transfer 43 (2000) 3701-3707.
[25] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, Journal of Chemical Physics 20 (1952) 571.
[26] X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle–fluid mixture, Journal of Thermophysics and Heat Transfer 13 (1999) 474–480.
[27] ASHRAE Handbook, Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA, 2005.
[28] F.P. Incropera, D.P. DeWitt, Introduction to Heat Transfer, third ed. John Wiley & Sons, Inc., New York, 1996.
[29] R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, International Journal of Heat and Mass Transfer 53 (2010) 4607-4618.
[30] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, 1980.
[31] D. Wen, Y. Ding, Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids), IEEE Transactions on Nanotechnology 5 (2006) 220-227.
[32] A. Bejan, Convective Heat Transfer, second ed. John Wiley & Sons, New York, 1995.
[33] K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, International Journal of Heat and Mass Transfer 50 (2007) 4003-4010.