Prediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks

Document Type : Original Research Paper

Authors

1 Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, I.R. Iran

2 Department of Mechanical Engineering, University of Sistan & Baluchestan, Zahedan, I.R. Iran

Abstract

In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp  is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi  ), wall heat flux (qnw  ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ). The required output data for training the ANN are taken from the results of numerical simulations. The numerical simulations of nanofluid are performed using two phase mixture model by FORTRAN programming language. The flow regime and the wall boundary conditions are assumed to be laminar and constant heat flux respectively. The ANN results are compared with the numerical simulated one and excellent agreement is observed. To view the accuracy of ANN model, statistical measures R2 , RMSE and MAPE are used and it is seen that the ANN model has high accuracy in predicting the (Δp ) values.  

Keywords


[1] S.K. Das, N. Putra, P.W. Thiesen, R. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003) 567-574.
[2] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Appl. Thermal Eng. 29 (2009) 2477-2483.
[3] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Thermal Eng. 30 (2010) 2213-2218.
[4] E. Ebrahimnia-Bajestan, H. Niazmand, W. Duangthongsuk, S. Wongwises, Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, Int. J. Heat Mass Transfer 54 (2011) 4376–4388.
[5] M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow 32 (2011) 107–116.
[6] R. Lotfi, Y. Saboohi, A.M. Rashidi, Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, Int. Commun. Heat Mass Transfer 37 (2010) 74–78.
[7] M. Shariat, A. Akbarinia, A. Hossein Nezhad, A. Behzadmehr, R. Laur, Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts, Appl. Therm. Eng. 31 (2011) 2348-2359.
[8] P. Razi, M.A. Akhavan-Behabadi, M. Saeedinia, Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux, Int. Commun. Heat Mass Transfer 38 (2011) 964–971.
[9] R.S. Vajjha, D.K. Das, P.K. Namburu, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow 31 (2010) 613–621.
[10] S.J. Farlow, Self-organizing Method in Modeling: GMDH type algorithm. Marcel Dekker Inc, 1984.
[11] N. Nariman-Zadeh, A. Darvizeh, R. Ahmad-Zadeh, Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process, J. Eng. Manufact. 217 (2003) 779–790.
[12] N. Amanifard, N. Nariman-Zadeh, M.H. Farahani, A. Khalkhali, Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks, Energy Convers. Manag. 49 (2008) 2588–2594.
[13] H. Safikhani, M.A. Akhavan-Behabadi, N. Nariman-Zadeh, M.J. Mahmoodabadi, Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chemical Eng. Research Design 89 (2011) 301–309.
[14] M.J. Wilson, T.A. Newell, J.C. Chato, C.A.I. Ferreira, Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes, Int. J. Refrig. 26 (2003) 442–451.
[15] J. Quiben, L. Cheng, J. Da Silva, J. R. Thome, Flow boiling in horizontal flattened tubes: Part I – Two-phase frictional pressure drop results and model, Int. J. Heat Mass Transfer 52 (2009) 3645–3653.
[16] M. Nasr, M. A. Akhavan-Behabadi, S. E. Marashi, Performance evaluation of flattened tube in boiling heat transfer enhancement and its effect on pressure drop, Int. Commun. Heat Mass Transfer 37 (2010) 430–436.
[17] M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow. VTT Publications, 1996.
[18] L. Schiller, A. Naumann, A drag coefficient correlation. Z. Ver Deutsch Ing, 1935.
[19] B. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11 (1998) 151–170.
[20] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.
[21] N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, J. Appl. Physics 42 (2009) 055501 (6).
[22] C. H. Chon,K. D. Kihm, S. P. Lee, S. U. S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity Enhancement, J. Appl. Physics 87 (2005) 153107 (3).
[23] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer 46 (2003) 3639-3653.
[24] A. Bejan, Convective heat transfer. John Wiley & Sons Inc, 2004.
[25] S. V. Patankar, Numerical Heat Transfer Fluid Flow. Washington: Hemisphere, 1980.
[26] R. K. Shah, A. L. London, Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978.
[27] S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow 29 (2008) 557-566.
[28] A. G. Ivakhnenko, Polynomial theory of complex systems. IEEE Trans Sys Man Cybern. SMC-1, 1971.
[29] C. Douglas Montgomery, Design and Analysis Experiments. John Wiley & Son Inc, 1991.
[30] T. H. Hou, C. H. Su, W. L. Liu, Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technolog. 173 (2007) 153–162.