[1] S.K. Das, N. Putra, P.W. Thiesen, R. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125 (2003) 567-574.
[2] S.M.S. Murshed, K.C. Leong, C. Yang, A combined model for the effective thermal conductivity of nanofluids, Appl. Thermal Eng. 29 (2009) 2477-2483.
[3] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, The effect of alumina/water nanofluid particle size on thermal conductivity, Appl. Thermal Eng. 30 (2010) 2213-2218.
[4] E. Ebrahimnia-Bajestan, H. Niazmand, W. Duangthongsuk, S. Wongwises, Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, Int. J. Heat Mass Transfer 54 (2011) 4376–4388.
[5] M. Kalteh, A. Abbassi, M. Saffar-Avval, J. Harting, Eulerian–Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel, Int. J. Heat Fluid Flow 32 (2011) 107–116.
[6] R. Lotfi, Y. Saboohi, A.M. Rashidi, Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, Int. Commun. Heat Mass Transfer 37 (2010) 74–78.
[7] M. Shariat, A. Akbarinia, A. Hossein Nezhad, A. Behzadmehr, R. Laur, Numerical study of two phase laminar mixed convection nanofluid in elliptic ducts, Appl. Therm. Eng. 31 (2011) 2348-2359.
[8] P. Razi, M.A. Akhavan-Behabadi, M. Saeedinia, Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux, Int. Commun. Heat Mass Transfer 38 (2011) 964–971.
[9] R.S. Vajjha, D.K. Das, P.K. Namburu, Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator, Int. J. Heat Fluid Flow 31 (2010) 613–621.
[10] S.J. Farlow, Self-organizing Method in Modeling: GMDH type algorithm. Marcel Dekker Inc, 1984.
[11] N. Nariman-Zadeh, A. Darvizeh, R. Ahmad-Zadeh, Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process, J. Eng. Manufact. 217 (2003) 779–790.
[12] N. Amanifard, N. Nariman-Zadeh, M.H. Farahani, A. Khalkhali, Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks, Energy Convers. Manag. 49 (2008) 2588–2594.
[13] H. Safikhani, M.A. Akhavan-Behabadi, N. Nariman-Zadeh, M.J. Mahmoodabadi, Modeling and multi-objective optimization of square cyclones using CFD and neural networks, Chemical Eng. Research Design 89 (2011) 301–309.
[14] M.J. Wilson, T.A. Newell, J.C. Chato, C.A.I. Ferreira, Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes, Int. J. Refrig. 26 (2003) 442–451.
[15] J. Quiben, L. Cheng, J. Da Silva, J. R. Thome, Flow boiling in horizontal flattened tubes: Part I – Two-phase frictional pressure drop results and model, Int. J. Heat Mass Transfer 52 (2009) 3645–3653.
[16] M. Nasr, M. A. Akhavan-Behabadi, S. E. Marashi, Performance evaluation of flattened tube in boiling heat transfer enhancement and its effect on pressure drop, Int. Commun. Heat Mass Transfer 37 (2010) 430–436.
[17] M. Manninen, V. Taivassalo, S. Kallio, On the mixture model for multiphase flow. VTT Publications, 1996.
[18] L. Schiller, A. Naumann, A drag coefficient correlation. Z. Ver Deutsch Ing, 1935.
[19] B. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transfer 11 (1998) 151–170.
[20] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer 43 (2000) 3701–3707.
[21] N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids, J. Appl. Physics 42 (2009) 055501 (6).
[22] C. H. Chon,K. D. Kihm, S. P. Lee, S. U. S. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity Enhancement, J. Appl. Physics 87 (2005) 153107 (3).
[23] K. Khanafer, K. Vafai, M. Lightstone, Buoyancy driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids, Int. J. Heat Mass Transfer 46 (2003) 3639-3653.
[24] A. Bejan, Convective heat transfer. John Wiley & Sons Inc, 2004.
[25] S. V. Patankar, Numerical Heat Transfer Fluid Flow. Washington: Hemisphere, 1980.
[26] R. K. Shah, A. L. London, Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978.
[27] S. Mirmasoumi, A. Behzadmehr, Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat Fluid Flow 29 (2008) 557-566.
[28] A. G. Ivakhnenko, Polynomial theory of complex systems. IEEE Trans Sys Man Cybern. SMC-1, 1971.
[29] C. Douglas Montgomery, Design and Analysis Experiments. John Wiley & Son Inc, 1991.
[30] T. H. Hou, C. H. Su, W. L. Liu, Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm, Powder Technolog. 173 (2007) 153–162.