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ABSTRACT: In this study, the free vibration analysis of smart vibration control (SVC) systems based on Reddy — Levinson model and
modified strain gradient theory is developed. This system consist of a micro beam at middle and two magneto-electro-elastic (MEE)
composite micro beams at top and bottom which connected by enclosing elastic medium and simulated by Winkler and Pasternak
foundation. The effects of the lower MEE composite micro beam in the absence of upper MEE composite micro beam and also the effect
of both MEE composite micro beams together on the dimensionless natural frequency of the middle micro beam are evaluated. It is shown
that the presence of both MEE composite micro beams together have less dimensionless natural frequency than presence of lower MEE
composite micro beam alone. The results of this work can be useful to analysis, design and manufacture intelligent micro-systems to
hamper resonance phenomenon or as a sensor to control the dynamic stability of micro structures.
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INTRODUCTION

Smart vibration control systems (SVCS) due to its unique
properties have attracted the attention of many the research
communities. The SVCS has been widely extended in micro-
and nano-scale devices and systems such as thin films atomic
force microscopes (AFMS) [1-3], micro- and nanoelectro-
mechanical systems (MEMS) and NEMS)[4]. Magneto
electro elastic (MEE) micro and nanocomposite materials are
the main components of SVCS [5-7]. MEE materials have
the unique ability of converting the system energy from one
form to the other (among magnetic, electric and mechanical
energies) [8-9]. A literature review represents that the
mechanical behavior of SVCS and MEE structural elements
have been investigated by several researchers. Nonlinear
vibration of a nanobeam (NB) coupled with a piezoelectric
nanobeam (PNB) based on the strain gradient theory in
conjunction with the Euler-Bernoulli beam model is
investigated by Ghorbanpour Arani et al. [10] They
considered that the PNB is subjected to an external electric
voltage in thickness direction and a uniform temperature
change. Their results indicated that the dimensionless
frequency of NB reduces because of increasing the external
electric voltage. Pisarskia et al. [11] Buckling behavior of
nonlocal MEE functionally graded (FG) beams based on a
higher-order beam model is represented by Ebrahimi and
Barati [12]. It is obvious from their results that the magnetic
and electric fields, nonlocal parameter, power-law index

parameter, power-law index and slenderness ratio parameter,
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power-law index and slenderness ratio have significant
effects on the buckling behavior of MEE-FG nanobeams.
Vaezi et al. [13] obtained natural frequencies and buckling
loads of a MEE simply supported microbeam under electric
and magnetic potentials.

Their results revealed that by increasing of the value of
length-to-thickness ratio is higher than the values of the
normalized natural frequency. Nonlocal nonlinear plate
model for large amplitude vibration of MEE nanoplates was
presented by Farajpour et al. [14].

Kattimani and Ray [15] analyzed active damping of
geometrically nonlinear vibrations of MEE-FG plates
integrated with the patches of the active constrained layer
damping (ACLD) treatment. They proposed the constrained
viscoelastic layer of the ACLD treatment is modeled by
using a Golla—Hughes—McTavish (GHM) method in time
domain. Gharib et al. [16] developed the linear vibrations of
a smart thin micro panel of polymeric nano-composite
reinforced by the single-walled boron nitride nano-tubes
(SWBNNTs) and the matrix Poly-VinyliDene Fluoride
(PVDF) on an elastic substrate. Ghorbanpour Arani and his
research group [17] addressed wave propagation in
embedded nanocomposite polymeric piezoelectric micro
plates reinforced by single-walled carbon nanotubes
(SWCNTSs) using viscoelastic quasi-3D sinusoidal shear
deformation theory. Using Eringen’s nonlocal theory and
analytical solution the dimensionless phase velocity, cut-off
and escape frequencies are obtained.
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Thermal moduli
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Piezoelectric constant
Dilatation gradient tensor

Magnetic potentials
Knocker symbol
Laplace vector

Strain tensor
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17 Symmetric rotation gradient tensor
Electric potentials
| Independent material length scale
1 Independent material length scale
m;  Higher —order stresses
% Infinitesimal rotation vector
7 Pyromagnetic constant
4 Shear modulus
4 Shear modulus
v,  Pyroelectric constant
P Density of MEE composite micro beam
o Density of micro beam
o Stress tensor
o Classical stress tensor
Ti(;i) Higher — order stresses
@ Angle of the rotation
X Symmetric rotation gradient tensor
¢, Variation of electric
@ Dimensionless natural frequency
Y,  Magnetic potentials
0, Components of vibration mode
p,  Higher —order stresses
q;  Piezomagnetic constant
S, Dielectric constant
Q,  External magnetic
AT Temperature change
Subscripts
i Number of beams (0,1,2)
i Number of MEE

NUMERICAL METHOD

The results of their research illustrated that the cut-off
and escape frequencies were decreased with increasing of the
small scale parameter. Wang et al. [18] presented vibration
analysis of piezoelectric ceramic circular nanoplates
considering surface and nonlocal effects. Three-dimensional
free vibration of multi layered MEE plates under combined
clamped/free lateral boundary conditions using a semi-
analytical discrete layer approach was analyzed by Chen et
al [19]. Their results showed that considering the
magnetostrictive layers as the outer layers in the sandwich
MEE laminate yields an increase of an average 6-8% in
frequency as compared to the laminate with the piezoelectric
layers on the outside. Arefi [20] presented the wave
propagation analysis of a functionally graded nano-rod made
of MEE material subjected to an electric and magnetic
potential. Using Hamilton's principle and nonlocal elasticity
theory, the equation of motion is obtained. It is found from
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his results that the applied voltage and magnetic field have a
significant effect in changing the imaginary part of the phase
velocity of the nano-rod. Furthermore, the imaginary part of
the phase velocity for different values of applied magnetic
field and voltage indicates that increasing the applied voltage
and magnetic field decreases considerably the dimensionless
imaginary part of the phase velocity. Linear and nonlinear
free vibration of a multilayered MEE doubly-curved shell
resting on an elastic foundation was studied by Shooshtari
and Razavi [21]. They employed the Donnell shell theory for
achieved equation of motion and Gauss’ laws for
electrostatics and magnetostatics modeled the electric and
magnetic behavior. Their results showed that electric and
magnetic potentials have more effect on the nonlinear
frequency ratios of MEE shells with smaller thicknesses and
radii of curvature. Also, they [22] introduced nonlinear free
vibration of symmetric MEE laminated rectangular
plates.They showed that using MEE layers in composite
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plates decreases nonlinear frequency ratio. Also, length-to-
thickness ratio has negligible effect on the nonlinear
frequency ratio while comparing with the effects of aspect
ratio.

Li and Feng [23] proposed the static bending and the free
vibration of a simply supported piezoelectric beam based on
the modified strain gradient theory and Timoshenko beam
theory. Their results depicted that the difference between the
natural frequencies predicted by the modified strain gradient
model and the classical model are large when the length-
thickness ratio of the beam is small.

Also for the static bending, the electric potential, stress
and electric displacement that predicted by the modified
strain gradient model are smaller than those predicted by the
classical Timoshenko beam model. The free vibration of
MEE nanobeams based on the nonlocal theory and
Timoshenko beam theory is carried out by Ke and Wang
[24].

They used the differential quadrature method (DQM) to
obtain the natural frequencies and mode shapes of MEE
nanobeams.

Their studies revealed that the natural frequency of
nonlocal nanobeam is always smaller than that of the
classical nanobeam, and it decreases with an increase in the
nonlocal parameter.

Ansari et al. [25] examined a nonlocal geometrically
nonlinear beam model for MEE nanobeams subjected to
external electric voltage, external magnetic potential and
uniform temperature rise. In the other work, Ansari et al. [26]
developed the forced vibration behavior of nonlocal third-
order shear deformable beam model of magneto - electro -
thermo elastic (METE) nanobeams based on the nonlocal
elasticity theory in conjunction with the von Karman
geometric nonlinearity. They depicted that increasing either
the nonlocal parameter or the slenderness ratio leads to
decreasing the natural frequency of nanobeams.
Atabakhshian et al. [27] introduced nonlinear electro-
thermal vibration and stability of a smart coupled nanobeam
system with an internal flow based on nonlocal elasticity
theory.

It is concluded from their results that applying an electric
voltage on piezoelectric polymeric beam will increase the
stability of fluid-conveying nanotube. Mohammadimehr et
al. [28] established the buckling and deflection of the double-
coupled piezoelectric polymeric nanocomposite rectangular
plates reinforced by SWCNTs and SWBNNTSs based on
modified strain gradient theory embedded in elastic
foundation.

Their research revealed that the elastic foundation and
van der Waals interaction in contrast to applied voltage
increase the dimensionless critical biaxial buckling load and
vice versa decrease the dimensionless deflection of the
double coupled nanocomposite plates. Also, they [29]
exhibited free vibration of viscoelastic double-bonded
polymeric nanocomposite plate reinforced by SWCNTs
embedded in viscoelastic foundation based on modified

41

strain gradient theory. They found that the non-dimensional
natural frequency in out of phase mode is greater than that of
in- phase mode.

It is also found that the double bonded nanocomposite
plate oscillated as single nanaocomposite plate of in-phase
mode.

GEOMETRY OF SYSTEM

The geometry of smart micro- beam system illustrated in
Figure 1 that showed the three parallel micro beams. At the
middle system, a micro beam is considered that don’t have a
piezoelectric and magnetostrictive effect. Two MEE
composite micro beams embedded at top and bottom of
micro beam are considered that the external magnetic
potential, external electric potential and temperature change
are exposed to them.

It should be noted that the bottom MEE composite
microbeam, the middle microbeam and the top MEE
composite micro beam are mentioned by 0, 1 and 2 numbers,
respectively. The each MEE composite micro beam is
connected to the micro beam by elastic foundation.

Fig. 1. Schematic figure of the smart micro-beam system

The governing equation of motion for smart micro-
beam system
Reddy —Levinson displacement model and Kinetic
energies

On the basis of the third-order shear deformation beam
theory, the displacements field of Reddy-Levinson (R-L)
beam can be written as follows [30-32]:

0, (x,2,t)=0 2

0y (X, z,t)=w, (x,t) (3)

Using equation (1-3) the kinetic energy for each micro
beam is given by:



H. Mohammadi Hooyeh et al.

o(-zg (x )-cz'(-q (x vt)+%x't)))

K, =%pIL dAdx

o9, 2 _ o2 My % 67Wi
1 2c1{m;}(at)(6m) "

dx

i 99y M | gy oW,
,}(at) +2cl{mz}(at G ot

m
m
m _ m _
+{ i}(%)er{ 0} aW.)z
m; | ot mg | ot

where superscript (*) stands for the micro beam (1). Also

m
{ [}(r =0,2,4,6) expressed as:
m

r

{mi}z{i*}jA(l,Zz,ZA,Ze)jA (r=0,2,4,6) (5)

The strain energies using modified strain gradient
theory

The modified strain gradient elasticity theory that
exhibited by Lam[33]and Yang [34] states that the stored
strain energy in a continuum constructed by linear MEE
composite micro beam and micro beam occupying region,
with infinitesimal deformations is given by [35- 37]:

e : ri(.l)
{ i}é‘ij +{pl*}7i +{ il;l)}nijk(l)
u, 2°e (m, D,E,+BH,
+ =
m; ZI] O

In which the components of the strain tensor, the dilatation
gradient tensor, the deviatoric stretch gradient tensor, the
symmetric rotation gradient tensor, the electric field and the
magnetic ~ field are  respectively  denoted by
&7 % 2B H, which are defined as [38-42]:

(6)

&jj :%(ui‘j +U;;) (1
7/i :‘gmm,i (8)

1 1
77uk(1) 25(51k,| +Ey i +gu,k)7ﬁé‘u (gmm.k +2‘9mk,m)

1 1 9)
7E5jk (gmm,l Jr2gmi,m)iﬁé‘ki (gmm,j Jr2‘E‘mj,m)
Xij :%(Ki‘j +K) K :%(Curl(u))i (10)

E, =-0, (11)

H, =T, (12)

whereu, , ¢,

. and & are the displacement vector, the
dilatation strain, the infinitesimal rotation vector and the
Knocker symbol respectively. {p;,p; }.{z%. 7} {my.m;}
0 andT represented the higher — order stresses, the electric
represented the higher — order stresses, the electric and the
magnetic potentials respectively which may be expressed as
follows[41],[43]: and the magnetic potentials respectively

which may be expressed as follows[41],[43]:
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I'(x,2,t) = —cos(f2)Y,, (x,t)+22%, ;i :% (17)

MEE Reddy-Levinson (R-L) micro composite beam
which is under the plane stress condition, can be written as
follows:

O 611 0 7631 0 7(7131 0 Ex et

o, 0 ¢C, 0 -g& O Ois || 7w 0

|0 & o0 5 0 dE| o)
D, e, 0 5, 0 dys E, Vv, (18)
B, 0 G, 0 d, 0 as|H, 0

1B, | lGu O dy O am 0 J[H, | | 7 ]

Ci; €0 .S B,J d_,J N7 and 4, are constants that
given at Appendix (A-1).

The classical stress tensor 0;— for micro — beam can be
obtained as follows:

oy =S58 +21 g (19)
where [46]:
N Ev * E

(20)

Tava-2 Y T2+
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By substituting equations (1-3) into equation 7, the 1(ow op) 3 _,[ ow o
components of normal and shear strains for R-L beam model Koy = X = _4[ PYE @] + ot [_ el axj -
are obtained as: 3 (26)
Zyz :Zyz :750’12 [Ei(pj
£, =1 a—(p—clz 3(—6—(p+ 6?\/\/2 j (21) ; i
ox ox X The higher-order stresses for SVCS can be attained by

substituting equations (23 -26) into equations (13-15):
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By substituting equations 21 and 23 into equation 10 the

non - zero symmetric rotation gradient tensor can be written
as:
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The strain energy for micro — beam by substituting
equations (18-28) into equation 6 is given by:

(28)
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And for MEE composite micro-beams can be written as:
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The bending moments, couple moments, higher-order
resultant forces and higher order moments for micro — beam
and MEE composite micro- beams can be obtained from
Appendix (A-2).

The work done by external loads

For modeling elastic medium between the beams, the
Pasternak model is used. According to the Winkler and
Pasternak foundations, the effects of the surrounding elastic
medium on the outer beams are considered as follows [45]:

F

elastic medium

=(K,w —K, Viv) (31)

If K,,and K considered for the elastic medium between
MEE composite micro — beam (0) and micro- beam (1) and

and considered for the elastic medium between micro —
beam (1) and MEE composite micro - beam (2) the external
work due to joined beams together can be written as follows:
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elastic medium
0

L (32)
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MEE composite micro — beams are subjected to the
external electric voltage Vv and the external magnetic

potential Q,; and temperature change AT . The work done
by this forces can be calculated as:

L
Vextemalloads :1_[ [(Nm +Ne +N )(a J ]
2 0 OX (33)
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Hamilton’s principle

Hamilton’s principle is employed here to achieve the
equation of motion for smart micro- beam system. Therefore,
this principle can be expressed as:
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By calculating equation 34 and setting the coefficient of
mechanical, electrical and magnetically to zero lead to the
following motion equations:
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By substituting equation (A-2) into equation (35-44) the

following equations of motion can be expressed as:
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Non-dimensional form of motion equations
By introducing the dimensionless quantities that

represented at Appendix (A-3), the motion equations can be
obtained in the following dimensionless form:
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The dimensionless simply supported (S-S) boundary
conditions for smart micro- beam system are considered as
follows:

w, - g e -0 W,
ox X2

=0 at (X=01)i=012  (65)

SOLUTION PROCEDURE

The differential quadrature method (DQM) is employed to
solve the motion equations (55-64) and the associated
boundary condition (64) to determine the natural frequencies
and mode shape of the smart micro- beam system. DQM
transforms the differential equations into a set of analogous
algebraic equations in terms of the unknown function values
at the resembled points in the solution domain [46].This
method is used to discretize the motion equations using the
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approximation of derivatives of the function f(x) by linear
sums of all functional values in the domain[47,48]:

drf
dx ?

X =X;

N
:ZAIpr(XJ) i=12..,N

j=1

(66)

The first order derivatives is obtained by following
equation[49-51]:

oo M) oL ij=12.N
(X; =x; )M, (x;) (67)
cP=-> c; fori=j i,j=12..,N
j=Lj=i
Where:
Ny
M (x) =T -x)) (68)
j=1
j#i
The pth order derivative can be obtained as follow:
[Am) ] :[Au) J” (69)

For determine the unequally spaced position of the grid
points the Chebyshev-Gauss—Lobatto polynomials was
employed as follow [25]:

2i 4];:} i =1,2,..,N

X; _L l—cos[
2 N

Applying the relationships (66) to equations (55-64), one
obtains a set of linear ordinary differential equations that
represented at Appendix (A-5) - (A-15). The associated
boundary conditions can behandled in the same way. For
boundary condition (65) can be written as:

(70)

N N
Wi =Y AP =0y =0, =0, > AW, =0
1 1

aa X=0

N N (71)
Wiy =ZAiJ@\PiN :(DEjN =®EjN =0, ZAU(ZWNZ =0

1 1
a X=1

Linear ordinary differential equations together with the
boundary conditions, can be expressed as the following
matrix form:

[M J{e} +[K Naj=0 (72)

In which
vector as:

shows the unknown dynamic displacement

50

(73)

General solution of motion equations are considered as:

W, (x,t) =W, (X )e'*
W (x,t) =%, (X )e'r
@, (x,t) =D (X )e'
0,(x,t) =6, (X )e'"

(74)

m . .
where @ = }A—OQL represents the dimensionless natural
44

frequency; W,(X),¥,(X),®,(X) and®,(x) are the

components of vibration mode shape vector {q"} . ubstituting
equation 74 into equation 72 yields:

(K]-[M Jo*){a"} ={0} (75)

By solving equation 75, the dimensionless natural
frequencies and their associated vibration mode shapes can
be obtained.

NUMERICAL RESULTS

The current numerical results are given for the smart
micro- beam system at (SS-SS) boundary condition. MEE
numbers 0 and 2 are made of two-phase BiTiOs;—CoFe;04
composites whose material properties are listed in reference
[24] and [25]. Micro beam number 1 made of epoxy with the
elastic modulus (E = 1.44 GPa), density ( =1220 ) and the
Poisson’s ratio ( 0.38)[52].Pasternak and Winkler
constants and the other properties for MEE composite
microbeams (0, 2) and microbeam (1) are considered as:

|=17.64m,h =21 b = 2h, L =100 K,,, =K, =10%("-)

m2’  (76)

K=Ky, =10(N)

It should be noted that all of represented rez?lij are based
on equation 76, the data of each Table or Figure is stated
under them.

The concluded results are compared with simplified
analysis is represented by Wang et al. [53] on vibration of
the microbeam (1) in which the MEE micro beams (0,2) are
ignored. Therefore, Figure 2 shows the comparison between
the obtained results for normalized frequency of present
work and results obtained by Ref. [53]. It is shown that there
are a good agreement between them and show similar results

for classical theory (CT) (¢,=¢,=¢,=0) modified couple
stress theory (MCST) (¢,=¢,=0=¢,=1I)
gradient theory (SGT) .

and strain
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Table 1 represents the dimensionless first three
dimensionless natural frequencies of micro-beam (1) system
only, MEE composite micro — beam (0) with micro-beam (1)
together and smart micro — beam system (0,1,2)for different

values of aspect ratio('ll ) based on R — L beam model

(RLBM) and Timoshenko beam model (TBM) using MSGT,
MCST and CT.

The results of this Table are shown as follows:

e The dimensionless natural frequencies at each three
system for MSGT are higher than for MCST and
CT.

e By increasing the value of aspect ratio,
dimensionless natural frequencies at (RLBM) and
(TBM) for MSGT and MCST decreases and at CT
is constant.

o Dimensionless natural frequencies at (RLBM) is
higher than (TBM) for each three MSGT,MCST
andCT and each aspect ratio.

e The smart micro — beam system have less
dimensionless natural frequencies than micro-beam
(1) system only and MEE composite micro — beam
(0) with micro-beam (1) together.

e The micro-beam (1) system has maximum
dimensionless natural frequencies.

Figure 3 shows the effect of the external magnetic
potential on the dimensionless fundamental natural
frequency of the smart micro- beam system based on MSGT.
It is shown that by increasing the external magnetic potential
on the MEE micro beams, the dimensionless natural
frequency of the smart micro- beam system increases.
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Fig. 3. The effect of external magnetic parameter on the dimensionless
fundamental natural frequency based on MSGT.
Veo=Ve, =AT,=AT,=0).

The effect of the external electric voltage on the
dimensionless fundamental natural frequency of the smart
micro- beam system based on MSGT is illustrated in Figure
4. It can be observed that the dimensionless natural
frequency of the smart micro- beam system decreases with
increasing the external electric voltage on the MEE micro
beams. This is because that the imposed voltages brings in
more reduction in the stiffness of MEE micro beams, and
hence leads to lower natural frequencies of SVC system
respectively. Obviously, the effect of the external electric
potential is opposite to that of the external magnetic
potential.
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Fig. 4. The effect of external magnetic parameter on the dimensionless
fundamental natural frequency based on MSGT
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Table 1
the dimensionless first three dimensionless natural frequencies of micro-beam (1) system only, MEE composite micro — beam (0) with

ricro-beam (1) together and smart micro — beam system (0,1,2) for different values of aspect ratio (IE ) based on R — L beam model (RLBI!

and Timoshenko beam model (TBM) using MSGT, MCST and CT

Various mode (1) (011) (07112) (1) (011) (01112) (1) (011) (01112)
theory
h =2l h =4l h =6l
1 1.1163 0.9637 0.7371 0.7861 0.6385 0.4971 0.7081 0.5577 0.4360
MSGT 2 4.3066 3.7218 2.7491 3.0317 2.4692 1.8308 2.7288 2.1556 1.6004
(RLBM) 3 9.2169 7.9688 5.8256 6.4749 5.2902 3.9286 5.8183 4.6133 3.4390
1 1.0634 0.9236 0.7159 0.7701 0.6292 0.4507 0.6974 0.5524 0.4055
I\'/Il'ZfAT 2 3.7045 3.2569 2.4030 2.8259 2.3464 1.7387 2.5882 2.0846 1.5471
( ) 3 7.1916 6.3893 47047 5.6931 4.8121 3.4966 5.2695 4.3288 3.1761
1 0.8048 0.6574 0.5062 0.6840 0.5321 0.4143 0.6593 0.5055 0.3947
MCST 2 3.1168 2.5539 1.8934 2.6386 2.0592 1.5297 2.5402 1.9539 1.4523
(RLBM) 3 6.6937 5.5039 4.0756 5.6315 4.4125 3.2893 5.4119 41791 3.1202
MCST 1 0.7937 0.6518 0.5007 0.6762 0.5288 0.4094 0.6520 0.5026 0.3884
(TBM) 2 2.9703 2.4769 1.8350 2.5333 2.0144 1.4958 2.4422 1.9147 1.4227
3 6.1181 5.1936 3.8391 5.2133 4.2301 3.1469 5.0222 4.0194 2.9920
cT 1 0.6387 0.4832 0.3782 0.6387 0.4832 0.3782 0.6387 0.4832 0.3782
(RLBM) 2 2.4587 1.8653 1.3872 2.4587 1.8653 1.3872 2.4587 1.8653 1.3872
3 5.2297 3.9824 2.9777 5.2297 3.9824 2.9777 5.2297 3.9824 2.9777
cT 1 0.6319 0.4806 0.3580 0.6319 0.4806 0.3580 0.6319 0.4806 0.3580
(TBM) 2 2.3665 1.8307 1.3610 2.3665 1.8307 1.3610 2.3665 1.8307 1.3610
3 4.8625 3.8409 2.8371 4.8625 3.8409 2.8371 4.8625 3.8409 2.8371
"Table guide™

(0,2)
@)

(0,1,2)

12332
[

The effect of shear Pasternak constant and spring Winkler
constant between microbeam(1) and MEE micro beams(0,2)
versus external temperature change of MEE microbeam(0)
based on MSGT are shown in Figures 5 and 6. It is concluded
that the dimensionless natural frequency of smart micro-
beam system increases with an increase in the spring and
shear constants of elastic foundation. Considering the elastic

52

foundation leads to increase stiffness of smart micro- beam
system. In addition, it is evident that with an increase in the
external temperature change of MEE microbeam (0),
dimensionless natural frequency of smart micro- beam
system decreases. It is due to the fact that rise the temperature
gradient leads to softer structure .
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Figures 7 and 8 depict the effect of spring and shear
constants between micro-beam and MEE composite micro -
beams of smart micro - beam system versus aspect ratio
based on MSGT and MCST, respectively.
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Fig. 7. The effect of different spring and shear constants between micro

beams(0,1,2) versus aspect ratio based on MSGT.
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It is shown that the dimensionless natural frequency
increases with an increase in the spring and shear constants
of elastic foundation, while the stiffness of micro-beam as
well as natural frequency increases.
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Fig. 8. The effect of external voltage on the dimensionless fundamental
natural frequency versus external magnetic potential of MEE microbeam
(0) based on MCST. (AT, = AT, =Q,,, =0V, =0.01 )) -

Figure 9 show the effect of material length scale parameter
on the dimensionless magnetic potential for micro-beam (0)
based on MSGT (mode shapes 1).
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Fig. 9. The effect of material length scale parameter on the dimensionless
magnetic potential (mode 1) for micro-beam (O)based on MSGT

(ATO =AT, =00 =0, =V =Ve, =0).

Figure 10 represent the effect of material length scale
parameter on the dimensionless electric potential for micro-
beam (0) based on MSGT (mode shapes 1). It is depicts from
Figured 9 and 10 that the dimensionless magnetic potential
and the dimensionless electric potential for micro-beam (0)
increases with an increase in the aspect ratio. It is because
that with increasing aspect ratio the thickness of micro —
beam (0) increases and also the effect of magnetic and
electric potential become more.
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Fig. 10. The effect of material length scale parameter on the dimensionless
electric potential (mode 1) for micro-beam (0)based on MSGT
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Figure 11 present the rotation angle versus length of micro —
beam (1) for different value of length scale parameters based
on MSGT and mode shapes 1.

It is seen that from Figure 11 the value of rotation angle
increases with increasing the aspect ratio. This means that
micro-beam exhibits flexibly due to increasing aspect ratio.
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Fig. 11. rotation angle (mode 1) versus length of micro-beam (1) for
various material length scale parameters based on MSGT
(AT, =AT, =0, =Q,, =V, =V, =0)-

Figure 12 show the effect of material length scale
parameter on the dimensionless transverse deflection (mode
shapes 1) for micro-beam (1) based on MSGT. Figure 12
depicts that the wvalue of dimensionless transverse
displacement increasing with an increases the value of aspect
ratio.

These observations mean that with increasing aspect ratio
the micro-beam become more flexible.
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CONCLUSION

In this article, the free vibration analysis of smart micro-
beam based on Reddy — Levinson model and modified strain
gradient theory is developed. This system concluded a micro
beam at middle and two magneto-electro-elastic composite
micro beams at top and bottom which connected by
enclosing elastic medium and simulated by Winkler and
Pasternak foundation.

MEE micro beams are subjected to the external electric
voltage, magnetic potential and temperature change.

Governing equations of motion and boundary conditions
are derived using Hamilton’s principle. The differential
quadrature method is employed to solve them. The effects of
external magnetic potential, electric voltage, temperature
change, elastic foundation, dimensionless magnetic and
electric potentials, material length scale parameter and
slenderness ratio on the dimensionless natural frequency are
investigated.
The results of this research can be stated as:
1- It is found that by increasing the external electric voltage
and temperature change, the dimensionless natural frequency
of system decreases whereas this is contrary to the external
magnetic potential.
2- By increasing the value of aspect ratio, dimensionless
natural frequencies at (RLBM) and (TBM) for MSGT and
MCST decreases and for CT is constant.
3- Dimensionless natural frequencies at (RLBM) is higher
than (TBM) for each three MSGT, MCST and CT and each
aspect ratio.
4- The smart micro — beam system have less dimensionless
natural frequencies than micro-beam (1) system only and
MEE composite micro — beam (0) with micro-beam (1)
together.
5- It is shown that by increasing the external magnetic
potential on the MEE micro beams, the dimensionless
natural frequency of the smart micro- beam system increases.
Also, it can be observed that the influence of the external
electric voltage on the dimensionless natural frequency for
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smart micro- beam system in higher slenderness ratio is
more.

Furthermore, the dimensionless natural frequency of the
smart micro- beam system decreases with increasing of the
external electric voltage on the MEE micro beams.

6- It is concluded that with an increase in the temperature
change of MEE microbeam (0), dimensionless natural
frequency of smart micro- beam system decreases.

7-The effect of material length scale parameter on the
dimensionless electric potential for micro-beam (0) based on
MSGT (mode shapes 1) is investigated. The dimensionless
natural frequencies at each three system for MSGT are
higher than for MCST and CT. Because of considering three
material length scale parameters leads to enhance more
stiffness of micro structures.
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