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Abstract 

In this paper, Least Square Method (LSM) and Differential Transformation Method (DTM) are used to solve 
the problem of laminar nanofluid flow in a semi-porous channel in the presence of transverse magnetic field. 
Due to existence some shortcomings in each method, a novel and efficient method named LS-DTM is 
introduced which omitted those defects and has an excellent agreement with numerical solution. In the present 
study, the effective thermal conductivity and viscosity of nanofluid are calculated by Maxwell–Garnetts (MG) 
and Brinkman models, respectively. The influence of the three dimensionless numbers: the nanofluid volume 
friction, Hartmann number and Reynolds number on non-dimensional velocity profile are considered. The 
results show that velocity boundary layer thickness decrease with increase of Reynolds number and 
nanoparticle volume friction and it increases as Hartmann number increases. 
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1. Introduction 
 

    Most scientific problems in fluid mechanics and 
heat transfer problems are inherently nonlinear. All 
these problems and phenomena are modelled by 
ordinary or partial nonlinear differential equations. 
Most of these described physical and mechanical 
problems are with a system of coupled nonlinear 
differential equations. For an example heat transfer by 
natural convection which frequently occurs in many 
physical problems and engineering applications such 
as geothermal systems, heat exchangers, chemical 
catalytic reactors and nanofluid flow in a semi-porous 
channel has a system of coupled nonlinear differential  
________ 

equations for temperature or velocity distribution 
equations. 

The flow problem in porous tubes or channels has 
been under considerable attention in recent years 
because of its various applications in biomedical 
engineering, for example, in the dialysis of blood in 
artificial kidney, in the flow of blood in the capillaries, 
in the flow in blood oxygenators as well as in many 
other engineering areas such as the design of filters, in 
transpiration cooling boundary layer control [1] and 
gaseous diffusion [2]. In 1953, Berman [3] described 
an exact solution of the Navier-Stokes equation for 
steady two-dimensional laminar flow of a viscous, 
incompressible fluid in a channel with parallel, rigid 
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 Nomenclature  Greek Symbols 
* *
,A B      Constant parameter υ  Kinematic viscosity 

P  Fluid pressure σ  Electrical conductivity 
q  Mass transfer parameter ε  Aspect ratio h/Lx 

kx  General coordinates µ  Dynamic viscosity 

f Velocity function υ  Kinematic viscosity 

k  
Fluid thermal conductivity ρ

 Fluid density 

n Power law index in temperature 

distribution 

  

Re  Reynolds number  Subscripts 

Ha  Hartmann number ∞  
Condition at infinity 

u,v
 Dimensionless components velocity in

x  and y  directions, respectively   
 
 

nf  Nanofluid 

u*,v*
 

Velocity components in x  and y  

directions  respectively   
 
 

f  Base fluid 

x, y  Dimensionless horizontal, vertical  

coordinates respectively   
 
 

s  Nano-solid-particles 

x* ,y*  Distance in x,y directions parallel to 

the plates 

  

 

 

    porous walls driven by uniform, steady suction or 

injection at the walls. This mass transfer is paramount 

in some industrial processes. More recently, 

Sheikholeslami et al. [4] analyzed the effects of a 

magnetic field on the nanofluid flow in a porous 

channel through weighted residual methods called 

Galerkin method. Nanofluid, which is a mixture of 

nano-sized particles (nanoparticles) suspended in a 

base fluid, is used to enhance the rate of heat transfer 

via its higher thermal conductivity compared to the 

base fluid. Soleimani et al. [5] studied natural 

convection heat transfer in a semi-annulus enclosure 

filled with nanofluid using the Control Volume based 

Finite Element Method. They found that the angle of 

turn has an important effect on the streamlines, 

isotherms and maximum or minimum values of local 

Nusselt number. Natural convection of a non-

Newtonian copper-water nanofluid between two 

infinite parallel vertical flat plates is investigated by 

Domairry et al. [6]. They conclude that as the 

nanoparticle volume fraction increases, the 

momentum boundary layer thickness increases, 

whereas the thermal boundary layer thickness 

decreases. Sheikholeslami et al. [7] performed a 

numerical analysis for natural convection heat transfer 

of Cu-water nanofluid in a cold outer circular 

enclosure containing a hot inner sinusoidal circular 

cylinder in presence of horizontal magnetic field using 

the Control Volume based Finite Element Method.  

    There are some simple and accurate approximation 

techniques for solving differential equations called the 

Weighted Residuals Methods (WRMs). Collocation, 

Galerkin and Least Square are examples of the 

WRMs. Stern and Rasmussen [8] used collocation 

method for solving a third order linear differential 

equation. Vaferi et al. [9] have studied the feasibility 

of applying of Orthogonal Collocation method to 

solve diffusivity equation in the radial transient flow 

system. Hendi and Albugami [10] used Collocation 

and Galerkin methods for solving Fredholm–Volterra 

integral equation. Recently Least square method is 

introduced by A. Aziz and M.N. Bouaziz [11] and is 

applied for a predicting the performance of a 

longitudinal fin [12]. They found that least squares 

method is simple compared with other analytical 

methods. Shaoqin and Huoyuan [13] developed and 

analyzed least-squares approximations for the 

incompressible magneto-hydrodynamic equations. 

The concept of differential transformation method 

(DTM) was first introduced by Zhou [14] in 1986 and 

it was used to solve both linear and nonlinear initial 

value problems in electric circuit analysis. This 

method can be applied directly for linear and 

nonlinear differential equation without requiring 

linearization, discretization, or perturbation and this is 
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the main benefit of this method. S. Ghafoori et al. [15] 

used the DTM for solving the nonlinear oscillation 

equation. 

      The main aim of this paper is to investigate the 

problem of laminar nanofluid flow in a semi-porous 

channel in the presence of transverse magnetic field 

using Least Square (LSM) and Differential 

Transformation Methods (DTM). Also a novel and 

combined method from these two methods is 

introduced as LS-DTM which is very accurate and 

efficient. The effects of the nanofluid volume friction, 

Hartmann number and Reynolds number on velocity 

profile are considered. Furthermore velocity profiles 

for different structures of nanofluid (copper and silver 

nanoparticles in water or ethylene glycol) are 

investigated. 

 

 

2. Problem Description 
 

Consider the laminar two-dimensional stationary flow 

of an electrically conducting incompressible viscous 

fluid in a semi-porous channel made by a long 

rectangular plate with length of xL  in uniform 

translation in x * direction and an infinite porous 

plate. 

The distance between the two plates is h . We observe 

a normal velocity q on the porous wall. A uniform 

magnetic field B  is assumed to be applied towards 

direction *y   (Fig. 1). 

In the case of a short circuit to neglect the electrical 

field and perturbations to the basic normal field and 

without any gravity forces, the governing equations 

are: 

* *
0,

* *

u v

x y

∂ ∂
+ =

∂ ∂
 (1) 

22 2

2 2

* * 1 *
* *

* * *

* *
* ,

* *

nf

nf nf

nf nf

u u P
u v

x y x

Bu u
u

x y

ρ

µ σ

ρ ρ

∂ ∂ ∂
+ = − +

∂ ∂ ∂

 ∂ ∂
+ − 

∂ ∂ 

 (2) 

2 2

2 2

* * 1 *
* *

* * *

* *
,

* *

nf

nf

nf

v v P
u v

x y y

v v

x y

ρ

µ

ρ

∂ ∂ ∂
+ = −

∂ ∂ ∂

 ∂ ∂
+ + 

∂ ∂ 

   (3) 

 

The appropriate boundary conditions for the velocity 

are: 

0* 0 : * *, * 0,y u u v= = =          (4)

* : * 0, * ,y h u v q= = = −
        

 (5) 

Calculating a mean velocity U  by the relation: 

0* 0 : * *, * 0,y u u v= = =              (6) 

 We consider the following transformations: 

* *
; ,

x

x y
x y

L h
= =                          (7))

2

* * *
; ,

.
y

f

u v P
u v P

U q qρ
= = =  (8)

Then, we can consider two dimensionless numbers: 

the Hartman number Ha  for the description of 

magnetic forces [16] and the Reynolds number Re  

for dynamic forces: 

,
.

f

f f

Ha Bh
σ

ρ υ
=          (9)

Re .nf

nf

hq
ρ

µ
=

       
(10)

where the effective density( nfρ ) is defined as [12]: 

(1 )nf f sρ ρ φ ρ φ= − +  (11)

 

Where φ  is the solid volume fraction of nanoparticles. 

The dynamic viscosity of the nanofluids given by 

Brinkman [12] is 

2.5
(1 )

f

nf

µ
µ

φ
=

−
 (12)

the effective thermal conductivity of the nanofluid can 

be approximated by the Maxwell–Garnetts (MG) 

model as [12]: 
2 2 ( )

2 ( )

n f s f f s

f s f f s

k k k k k

k k k k k

φ

φ

+ − −
=

+ + −
 (13)

The effective electrical conductivity of nanofluid was 

presented by Maxwell [17] as below 



Hatami et al./ TPNMS 1 (2013) 124-137 

 

127 

 

3 1

1

2 1

s

fnf

f s s

f f

σ
φ

σσ

σ σ σ
φ

σ σ

 
−  

 = +
   

+ − −      
   

    (14)

The thermo physical properties of the nanofluid are 

given in Table 1. 

Introducing  Eqs. (6) and (10) into Eqs. (1) and (3) 

leads to the dimensionless equations: 

0,
u v

x y

∂ ∂
+ =

∂ ∂
   

(15) 

2

2 2 2 *
2

2 2 *

1
,

Re

y

nf

nf

Pu u
u v

x y x

u u Ha B
u

hq x y A

ε

µ
ε

ρ

∂∂ ∂
+ = − +

∂ ∂ ∂

 ∂ ∂
+ − 

∂ ∂ 

 
      

(16) 

2 2
2

2 2

1
.

y nf

nf

Pv v v
u v

x y x hq x y

µυ
ε

ρ

∂  ∂ ∂ ∂ ∂
+ = − + + 

∂ ∂ ∂ ∂ ∂ 
 

  (17) 

 

where *
A  and *

B   are constant parameters:  

*

3 1

(1 ) , * 1

2 1

s

fs

f s s

f f

A B

σ
φ

σρ
φ φ

ρ σ σ
φ

σ σ

 
−  

 = − + = +
   

+ − −      
   

 
 (18) 

 

 

Quantity of ε  is defined as the aspect ratio between 

distance h and a characteristic length xL of the slider. 

This ratio is normally small. Berman’s similarity 

transformation is used to be free from the aspect ratio 

ofε : 

( ) ( )0

*
; .

u dV
v V y u u U y x

U dy
= − = = +

    

(19)  

Introducing Eq. (19) in the second momentum 

equation (17) shows that quantity 
y

P y∂ ∂ does not 

depend on the longitudinal variable x . With the first 

momentum equation, we also observe that
2 2

yP x∂ ∂  is independent of x . 

We omit asterisks for simplicity. Then a separation of 

variables leads to [16]: 

( )
'2 '' '''

2.5*

22 *
' 2 2

* 2

1 1

Re 1

1
,

Re

y y

V VV V
A

P PHa B
V

A x x x

φ

ε ε

− −
−

∂ ∂
+ = =

∂ ∂

 (20)

( )

( )

' '

2.5*

2.5'' 2 *

1 1

Re 1

1 .

UV VU
A

U Ha B U

φ

φ

− =
−

 × − −
 

 (21)

 

The right-hand side of Eq. (20) is constant. So, we 

derive this equation with respect to x . This gives: 

( )

( )

2.52 * ''

2.5* ' '' '''

1

Re 1 ,

IV
V Ha B V

A V V VV

φ

φ

= − +

 − − 

 (22)

Where primes denote differentiation with respect to y 

and asterisks have been omitted for simplicity. The 

dynamic boundary conditions are: 

'

'

0 : 1; 0; 0,

1: 0; 1; 0.

y U V V

y U V V

 = = = =


= = = =
      (23) 

3. Analytical Methods 

3. 1 Least Square Method (LSM) 

    Suppose a differential operator D is acted on a 

function u to produce a function p: 

( ( )) ( )D u x p x=     (24) 

It is considered that u is approximated by a functionu�
, which is a linear combination of basic functions 

chosen from a linearly independent set. That is, 

 

 

1

n

i i

i

u u c ϕ
=

≅ =∑�     
(25)

    Now, when substituted into the differential 

operator, D, the result of the operations generally isn’t 

p(x). Hence an error or residual will exist: 
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( ) ( ( )) ( ) 0R x D u x p x= − ≠�       (26)     

The notion in WRMs is to force the residual to zero in 

some average sense over the domain. That is: 

( ) ( ) 0        1, 2,...,
i

X
R x W x i n= =∫      (27) 

    Where the number of weight functions Wi is exactly 

equal the number of unknown constants ci inu� . The 

result is a set of n algebraic equations for the unknown 

constants ci. If the continuous summation of all the 

squared residuals is minimized, the rationale behind 

the name can be seen. In other words, a minimum of 

2( ) ( ) ( )
X X

S R x R x dx R x dx= =∫ ∫       (28) 

    In order to achieve a minimum of this scalar 

function, the derivatives of S with respect to all the 

unknown parameters must be zero. That is, 

2 ( ) 0
i iX

S R
R x dx

c c

∂ ∂
= =

∂ ∂∫     (29) 

Comparing with Eq. (27), the weight functions are 

seen to be 

2i

i

R
W

c

∂
=

∂
    (30) 

    However, the “2” coefficient can be dropped, since 

it cancels out in the equation. Therefore the weight 

functions for the Least Squares Method are just the 

derivatives of the residual with respect to the 

unknown constants 

i

i

R
W

c

∂
=

∂
      (31) 

Because trial functions must satisfy the boundary 

conditions in Eq. (23), so they will be considered as, 

2

1

3

2

2 3

3

2 4 2 5

4 5

( ) 1 ( )

( )

( ) ( )
2 3

( ) ( )
2 4 2 5

U y y c y y

c y y

y y
V y c

y y y y
c c

 = − + −


+ −

 = −


+ − + −


 (32)

In this problem, we have two coupled equations (Eqs. 

(21) and (22)), so two residual functions will be 

appeared as, 

2 3 2 4
2 3 2 3 4

1 1 2 3 4 5 1 2 3 4 5 3 4

2

1 2

2 5
2

5 1 2

( , , , , , ) (1 ( ) ( ))( ( ) ( ) ( )) (
2 3 2 4

3 1

2 6 1

2 1

)( 1 (1 2 ) (1 3 )
2 5

s

f

s s

f f

y y y y
R c c c c c y y c y y c y y c y y c y y c y y c c

c c y Ha

y y
c c y c y

σ
φ

σ

σ σ
φ

σ σ

   
= − + − + − − + − + − − − + − +   

   

 
− 

 − − − +
   

+ − −   
     

− − + − + − − 
 

2.5 2 3

1 2

2.5

2 2.5 2 3

2 1 2 3 4 5 4 5 3 4 5

(1 ) (1 ( ) ( ))

Re 1 (1 )

3 1

( , , , , , ) 6 24 1 (1 ) ( (1 2 ) (1 3 ) (1 4 ))

2 1

s

f

s

f

s s

f f

y c y y c y y

R c c c c c y c c y Ha c y c y c y

φ

ρ φ
φ φ

ρ

σ
φ

σ
φ

σ σ
φ

σ σ

 
 
  − − + − + −
 
  
 

 
− + − 

 

  
−  

  = − − − + − − + − + − +
    

+ − −     
    

2.5

2 3 2 4 2 5
2 3 4 2 3 2

3 4 5 3 4 5 3 4 5 3 4 5

Re 1 (1 )

( ( ) ( ) ( ))( (1 2 ) (1 3 ) (1 4 )) ( 2 6 12 )
2 3 2 4 2 5

s

f

y y y y y y
c y y c y y c y y c y c y c y c c c c c y c y

ρ φ
φ φ

ρ

















 
− + − 

 



      
− + − + − − + − + − − − + − + − − − −      

        

(33) 

By substituting the residual functions, 

R1(c1,c2,c3,c4,c5, y) and R2(c1,c2,c3,c4,c5, y), into Eq. 

(29), a set of equation with five equations will 

appear and by solving this system of equations, 

coefficients c1-c5 will be determined. For example, 

Using Least Square Method for a water-copper 

nanofluid with Re=0.5, Ha=0.5 and φ =0.05.  U(y) 

and V(y) are as follows: 
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2 3

2 3

4 5

( ) 1 1.334953917

0.3461783819 0.01122446534

( ) 1.8703229 3.1584693

6.9279074 2.8991152

U y y

y y

V y y y

y y

= − +


−


= + −
 +
 

(34)

 

3.2 Differential Transformation Method 

(DTM) 

In this section the fundamental basic of the 

Differential Transformation Method is introduced. 

For understanding method’s concept, suppose that 

x(t) is an analytic function in domain D, and t=ti 

represents any point in the domain. The function 

x(t) is then represented by one power series whose 

center is located at ti . The Taylor series expansion 

function of x(t) is in form of: 

 

0

( ) ( )
( )             

!
t ti

k k

i

k
k

t t d x t
x t t D

k dt
=

∞

=

 −
= ∀ ∈ 

 
∑     (35) 

 

The Maclaurin series of x(t) can be obtained by 

taking ti=0 in Eq. (35) expressed as: 

0
0

( )
( )             

!
t

k k

k
k

t d x t
x t t D

k dt
=

∞

=

 
= ∀ ∈ 

 
∑     (36) 

 

As explained in [14] the differential transformation 

of the function x(t) is defined as follows: 

   

0
0

( )
( )

!
t

k k

k
k

H d x t
X k

k dt
=

∞

=

 
=  

 
∑  (37) 

 

Where X(k) represents the transformed function and 

x(t) is the original function. The differential 

spectrum of X(k) is confined within the interval 

[0, ]t H∈ , where H is a constant value. The 

differential inverse transform of X(k) is defined as 

follows: 

   0

( ) ( ) ( )k

k

t
x t X k

H

∞

=

=∑
 

(38) 

 

It is clear that the concept of differential 

transformation is based upon the Taylor series 

expansion. The values of function X(k) at values of 

argument k are referred to as discrete, i.e. X(0) is 

known as the zero discrete, X(1) as the first discrete, 

etc. The more discrete available, the more precise it 

is possible to restore the unknown function. The 

function x(t) consists of the T-function X(k), and its 

value is given by the sum of the T-function with 

(t/H)k as its coefficient. In real applications, at the 

right choice of constant H, the larger values of 

argument k the discrete of spectrum reduce rapidly. 

The function x(t) is expressed by a finite series and 

Eq. (38) can be written as:   

 

   
0

( ) ( ) ( )
n

k

k

t
x t X k

H=

=∑  (39) 

 

Some important mathematical operations performed 

by differential transform method are listed in Table 

2. Now we apply Differential Transformation 

Method (DTM) from Table 2 in to Eqs. (21) and 

(22) for finding ( ) and ( )U y V y . 

   

( )

0

2.5
0

2 2.5

( 1 ). ( ). ( 1 )

1 1
( 1 ). ( ). ( 1 ) .

Re .(1 )

( 1).( 2). ( 2) . .(1 ) . ( ) 0

k

l

k

l

k l U l V k l

k l V l U k l
A

k k U k Ha B U k

φ

φ

=

=

+ − + −

− + − + − −
−

× + + + − − =

∑

∑
 (40) 

 

 

   

2 2.5

2.5

0

0

( 1)( 2)( 3)( 4) ( 4)

. .(1 ) ( 1)( 2) ( 2)

Re. .(1 ) ( 1) ( 1)( )( 1 )

( )( 1 )( 2 )( 3 ) 0

k

l

k

l

k k k k V k

Ha B k k V k

A l V l k l k l

V k k l k l k l

φ

φ
=

=

+ + + + + −

− + + + −


− × + + − + −




− + − + − + − = 



∑

∑

 
(41) 

Where  and V U  represent the DTM transformed 

form of U and V respectively. The transformed 

form of boundary conditions can be written as: 

   (0) 0,     (1) 0,       (2) ,        (3)

(0) 1,     (1) .

V V V a V b

U U c

 = = = =


= =

 (42) 
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Using transformed boundary condition and Eq. we 

have, 

   
2

2 2 2

2

2 2 2

2

2 2

2 2

(2) 0.5 1

1 0.5 1

(4) 0.0833 1

0.1667 1 0.0833 1

(3) 0.333 Re 1 0

.667 Re 1 0.333 Re 1

0.1667 1 0.333 1

0.1667 1

(5) 0.05

U Ha B

Ha B Ha B

V Ha B a

Ha B a Ha B a

U a A

a A a A

Ha B c Ha B c

Ha B c

V Ha

φ

φφ φφ

φ

φ φ φ φ

φ

φφ φφ

φ φ φ

φ φ

 = − −


− + −


= − −


− + −

= − −

− + −

+ − − −

+ −

= 2

2 2 2

1

0.1 1 0.05 1

B b

Ha B b Ha B b

φ

φ φ φ φ










− −


− + −

 
(43) 

 

Where a, b, c are unknown coefficients that after 

specifying ( ) and ( )  U y V y and applying 

boundary condition (Eq. (42)) into it, will be 

determined. For water-copper nanofluid with 

Re=0.5, Ha=0.5 and φ =0.05 following values 

were determined for a, b and c coefficients. 

   a= 3.011719150, b= - 2.049532443, 

c= - 1.673547080 
(44) 

Finally, U(y) and V(y) are as follows, 

2

3

2 3

4 5

( ) 1 1.673547080y 0.1273175011y

+0.5462295787y

( ) 3.011719150y 2.049532443y

0.06390742601y 0.02609413491y

U y

V y

 = − −




= −
+ −

 
(45)

 

3.3 LS- DTM Combined Method 

     Since LSM and DTM have a little shortcoming 

in some areas for predicting the V(y) and U(y) (See 

results section), we combined these two methods 

as LS-DTM combined method which eliminated 

those defects and for all areas has an excellent 

agreement with numerical procedure. For this 

purpose we selected U(y) from Eq. (32) and V(y) 

from Eq. (41). By using these two equations four 

unknown coefficients will be existed: a, b, c1 and 

c2. For finding these coefficients, four equations 

are needed; two of them are obtained from Eq. (29) 

for c1 and c2, and other two equations are selected 

from boundary condition for V(y) in Eq. (23). For 

water-copper nanofluid with Re=0.5, Ha=0.5 and 

φ =0.05 following formula are calculated for U(y) 

and V(y) by this efficient and novel method,           

              
2

3

2 3

4 5

( ) 1 1.332674596 0.3491297634

0.01645516732

( ) 3.011719150y 2.049532443y

0.06390742601y 0.02609413491y

U y y y

y

V y

 = − +


−


= −
+ −

 

(46)

 

4. Results and discussion 
 

In the present study LSM and DTM methods are 

applied to obtain an explicit analytic solution of the 

laminar nanofluid flow in a semi-porous channel in 

the presence of uniform magnetic field (Fig. 1). 

Fig. 1. Schematic of the problem (Nanofluid in a porous 

media between parallel plates and magnetic field) 

 

For this aim Eqs. (21) and (22) are solved for 

different nanofluid structures (see Table 1) and 

comparison between described methods is 

demonstrated in Figs. 2 and 3. These figures explain 

that each of these two methods has a shortcoming 

which cannot completely predict the velocity 

distribution in a special area. As seen in Figs. 2 and 

3, LSM has a defect in predicting the V(y) and 

DTM has a defect in demonstrating the U(y). For 

eliminating this shortcoming and achieving to a 

reliable result, these two methods were combined 

and introduced as a novel method called LS-DTM 

combined method. 
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Fig. 2. Comparison of the DTM and LSM results for a) 

U(y) and b) V(y) for Cu-Water nanofluid when Re=0.5, 

Ha=0.5 and φ =0.05 

 

 

 
Fig. 3 Comparison of the DTM and LSM results for a) 

U(y) and b) V(y) for Silver-Ethylene glycol nanofluid 

when Re=1, Ha=1 and φ =0.01 

Table 1  

Thermo physical properties of nanofluids and 

nanoparticles 

Material 
Density(kg / 

m3) 

Electrical 

conductivit

y,σ((Ω.m)-1) 

Silver         10500 6.30×107 

Copper        8933 5.96×107 

Ethylene glycol 1113.2 1.07×10-4 

Drinking water 997.1 0.05 

Silver          10500 6.30×107 

Copper        8933 5.96×107 

Ethylene glycol 1113.2 1.07×10-4 
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Fig. 4 is improved form of Fig. 3 using LS-DTM 

combined method. This figure reveals that LS-DTM 

has an excellent agreement with numerical method 

in whole areas, and so, it is an accurate and 

convenient method for solving these kinds of 

problems. 

 

 
Fig. 4 LS-DTM results compared with numerical 

procedure for Fig. 3 state. 

Effect of Hartman number (Ha) on dimensionless 

velocities for water with copper is shown in Figs. 5. 

Generally, when the magnetic field is imposed on 

the enclosure, the velocity field suppressed owing to 

the retarding effect of the Lorenz force. For low 

Reynolds number, as Hartmann number increases 

( )V y decreases for my y>  but opposite trend is 

observed for my y< , my  is a meeting point that all 

curves joint together at this point. When Reynolds 

number increases this meeting point shifts to the 

solid wall and it can be seen that ( )V y decreases 

with increase of Hartmann number. Fig. 6-a and b 

show the effect of nanoparticle volume fraction on 

U(y) and V(y) for water with copper nanoparticles 

when Re=1 and Ha=1. Velocity boundary layer 

thickness decreases with increase of nanoparticle 

volume fraction.          

   Effect of Reynolds number (Re) on dimensionless 

velocities is shown in Figs. 6-c and d. It is worth to 

mention that the Reynolds number indicates the 

relative significance of the inertia effect compared 

to the viscous effect. Thus, velocity profile 

decreases as Re increases and in turn increasing Re 

leads to increase in the magnitude of the skin 

friction coefficient. Contour plots of the effect of 

Hartman number and nanoparticles volume fraction 

in wide range of data are depicted in Figs. 7.  

      
  Table 2  
Some fundamental operations of the differential 

transform method 

Origin function Transformed function 

( ) ( ) ( )x t f x g tα β= ± ( ) ( ) ( )X k F k G kα β= ± 

( )
( )

m

m

d f t
x t

dt
= 

( )! ( )
( )

!

k m F k m
X k

k

+ +
= 

( ) ( ) ( )x t f t g t= 

0

( ) ( ) ( )
k

l

X k F l G k l
=

= −∑

( )
m

x t t= 1,     if k = m,
( ) ( )

0,     if k m.
X k k mδ


= − =

≠
 

( ) exp( )x t t= 1
( )

!
X k

k
= 

( ) sin( )x t tω α= + 

( ) sin( )
! 2

k
k

X k
k

ω π
α= +

( ) cos( )x t tω α= + 
( ) cos( )

! 2

k k
X k

k

ω π
α= + 

 

The effects of the nanoparticle and liquid phase 

material on velocity’s profiles are shown in Tables 

3 and 4 for U(y) and V(y), respectively. These 
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tables reveal that when nanofluid includes copper 

(as nanoparticles) or ethylene glycol (as fluid phase) 

in its structure, the U(y) and V(y) values are greater 

than the other structures. 

 
Table 3  

U(y) variations for different types of nanofluids and nanoparticles, Re=1, Ha=1 and φ =0.04. 

y Water-Copper Water-Silver Ethylene glycol-Copper Ethylene glycol-Silver 

0.0 1.0 1.0 1.0 1.0 

0.1 0.83570944 0.83422691 0.8366021 0.8352604 

0.2 0.68526977 0.68251844 0.6869270 0.6844364 

0.3 0.55072934 0.54706012 0.5529409 0.5496176 

0.4 0.43267586 0.42850606 0.4351915 0.4314120 

0.5 0.33056756 0.32632363 0.3331308 0.3292806 

0.6 0.24305045 0.23912555 0.2454244 0.2418595 

0.7 0.16826652 0.16499404 0.1702490 0.1672728 

0.8 0.10414284 0.10178554 0.1055735 0.1034265 

0.9 0.04864722 0.04739956 0.0494059 0.0482677 

1.0 0.0 0.0 0.0 0.0 

 

Table 4  

V(y) variations for different types of nanofluids and nanoparticles, Re=1, Ha=1 and φ =0.04. 

y Water-Copper Water-Silver Ethylene glycol-Copper Ethylene glycol-Silver 

0.0 0.0 0.0 0.0 0.0 

0.1 0.02610404 0.025997188 0.026167546 0.026071871 

0.2 0.097561353 0.097211791 0.097768963 0.097456128 

0.3 0.204165243 0.203542825 0.204534660 0.203977939 

0.4 0.335581162 0.334740930 0.336079488 0.335328393 

0.5 0.48112359 0.480180063 0.481682731 0.480839846 

0.6 0.62958117 0.628678803 0.630115463 0.629309909 

0.7 0.769057186 0.768337156 0.769483116 0.768840824 

0.8 0.88678803 0.886349813 0.887046994 0.886656410 

0.9 0.96889373 0.96874723 0.968980208 0.968849751 

1.0 1.0 1.0 1.0 1.0 
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Fig. 5. Effect of Hartman number (Ha) on dimensionless velocities for water with copper nanoparticles, φ =0.04, a) 

U(y), Re=1, b) V(y), Re=1, c) U(y), Re=5 and d) V(y), Re=5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hatami

 

Fig. 6. Effect of nanoparticle volume fraction,

Effect of Reynolds number (Re) on c) U(y) and d) V(y) when Ha=10
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Effect of nanoparticle volume fraction,φ , on a) U(y) and b) V(y), for Cu-Water when Re=1 and Ha=1. 

Effect of Reynolds number (Re) on c) U(y) and d) V(y) when Ha=10φ =0.04. 

 

 

n Re=1 and Ha=1. 



Hatami

 

 

 

Fig. 7 Contour plot for showing the effect of Hartman number (Left) and nanoparticles fraction (Right) on V(y) 

 

6. Conclusion 
In this paper, Least Square and Differe

Transformation Methods are combined to 

eliminate the shortcoming of each method for 

solving the problem of laminar nanofluid flow in 

a semi-porous channel in the presence of 

uniform magnetic field. Outcomes reveal that 

this method is an accurate, pow

convenient approach compared by numerical 

method for solving this problem. The results 

indicate that velocity boundary layer thickness 

decrease with increase of Reynolds number and 

nanoparticles volume fraction and it increases as 

Hartmann number increases. Choosing copper 

(as nanoparticles) and ethylene glycol (as fluid 

phase) leads to maximum increment in velocity.
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